Math 538: Problem Set 2

Do a good amount of problems; choose problems based on what you already know and what you need to practice. Examples are important.

Ideals and primes

Problems 1-2 are good for you, but not essential for submission.
Fix a ring R

1. (The product operation on ideals)
(a) Show that the operation of multiplication of ideals in R is commutative and associative, and has the identity element R. If R is an integral domain show that $I J \neq(0)$ unless $I=(0)$ or $J=(0)$.
(b) Now let P, I, J be ideals of R with P prime and $P \supset I J$. Show that $P \supset I$ or $P \supset J$.
(c) Extend (b) to the caes of $P \supset \prod_{i=1}^{n} I_{i}$ where I_{i} is a finite set of ideals.
2. (Review: The CRT)
(a) Let I_{1}, \ldots, I_{k} be ideals, and suppose that $I_{i}+I_{j}=R$ where $i \neq j$. Show that $\prod_{i=1}^{k} I_{i}=\bigcap_{i=1}^{k} I_{i}$ and that the natural map $R / \cap_{i=1}^{k} I_{i} \rightarrow \oplus_{i=1}^{k} R / I_{i}$ is a well-defined isomorphism of rings.
(b) Suppose that $\sum_{i=1}^{k} I_{i}=R$, and let $n_{i} \in \mathbb{Z}_{\geq 1}$. Show that $\sum_{i=1}^{k} I_{i}^{n_{i}}=R$.

Unique factorization

Let L / K be an extension of number fields.
3. (Primes above and below)
(a) Let $\mathfrak{A} \triangleleft \mathcal{O}_{L}$ be a non-zero proper ideal. Show that $\mathfrak{A} \cap K=\mathfrak{A} \cap \mathcal{O}_{K}$ and that this is a non-zero proper ideal of \mathcal{O}_{K}.
(b) Let $\mathfrak{P} \triangleleft \mathcal{O}_{L}$ be a non-zero prime ideal. Show that $\mathfrak{p}=\mathfrak{P} \cap \mathcal{O}_{K}$ is a prime ideal of \mathcal{O}_{K}. We say that $\mathfrak{P l i e s}$ above \mathfrak{p} and write $\mathfrak{P} \mid \mathfrak{p}$.
(c) Show that $\mathfrak{P l i e s}$ above \mathfrak{p} iff $\mathfrak{P} \mid \mathfrak{p} \mathcal{O}_{L}$ as ideals of \mathcal{O}_{L}.
4. The map $\mathfrak{a} \mapsto \mathfrak{a} \mathcal{O}_{K}$.
(a) Let $\mathfrak{a} \triangleleft \mathcal{O}_{K}$ be a proper ideal. Show that there is $\gamma \in K \backslash \mathcal{O}_{K}$ such that $\gamma \mathfrak{a} \subset \mathcal{O}_{K}$, and conclude that $\mathfrak{a} \mathcal{O}_{L}$ is a proper ideal of \mathcal{O}_{L}.
(a) Let $\mathfrak{a}, \mathfrak{b}$ be (fractional) ideals of \mathcal{O}_{K}. Show that ($\left.\mathfrak{a b}\right) \mathcal{O}_{L}=\left(\mathfrak{a} \mathcal{O}_{L}\right)\left(\mathfrak{b} \mathcal{O}_{L}\right)$.
(b) Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_{K}. Comparing prime factorizations in $\mathcal{O}_{K}, \mathcal{O}_{L}$ show that $\mathfrak{a} \mathcal{O}_{L} \mid \mathfrak{b} \mathcal{O}_{L} \Rightarrow$ $\mathfrak{a} \mid \mathfrak{b}$. Conclude that the map $\mathfrak{a} \rightarrow \mathfrak{a} \mathcal{O}_{L}$ is injective on fractional ideals.
(c) Let \mathfrak{a} be an ideal of \mathcal{O}_{K}. Show that $\mathfrak{a} \mathcal{O}_{L} \cap \mathcal{O}_{K}=\mathfrak{a}$.

An example

5. (Dedekind) Let $K=\mathbb{Q}(\theta)$ where θ is a root of $f(x)=x^{3}-x^{2}-2 x-8$.
(a) Show that f is irreducible over \mathbb{Q}.
(b) Verify that $\eta=\frac{\theta^{2}+\theta}{2}$ satisfies $\eta^{3}-3 \eta^{2}-10 \eta-8=0$.
(c) Show that $1, \theta, \eta$ are linearly independent over \mathbb{Q}.
(d) Let $M=\mathbb{Z} \oplus \mathbb{Z} \boldsymbol{\theta} \oplus \mathbb{Z} \eta$ and let $N=\mathbb{Z}[\boldsymbol{\theta}]=\mathbb{Z} \oplus \mathbb{Z} \boldsymbol{\theta} \oplus \mathbb{Z} \boldsymbol{\theta}^{2}$. Show that $N \subset M \subset \mathcal{O}_{K}$.
(f) Calculate $D_{K / \mathbb{Q}}(M), D_{K / \mathbb{Q}}(N)$ (hint: $D_{K / \mathbb{Q}}(N)=-4 \cdot 503$).
(h) Show that $M=\mathcal{O}_{K}$

Hint: Let $\{\alpha, \beta, \gamma\}$ be an integral basis and consider $\frac{d_{K / \mathbb{Q}}(1, \theta, \eta)}{d_{K / \mathbb{Q}}(\alpha, \beta, \gamma)}$.
(i) Let $\delta=A+B \theta+C \eta$ with $A, B, C \in \mathbb{Z}$. Show that $2 \mid d_{K / \mathbb{Q}}(\mathbb{Z}[\delta])$, and conclude that $\mathbb{Z}[\delta] \neq$ \mathcal{O}_{K}.

Localization

6. (Localization at a prime) Let $\mathfrak{p} \triangleleft \mathcal{O}_{K}$ be a prime of K.
(a) Show that $\mathcal{O}_{K, \mathfrak{p}}=\left\{\left.\frac{\alpha}{s} \right\rvert\, \alpha, s \in \mathcal{O}_{K}, s \notin \mathfrak{p}\right\}$ is a subring of K. It is called the localization of \mathcal{O}_{K} at \mathfrak{p}.
(b) Show that $\mathfrak{p} \mathcal{O}_{K, \mathfrak{p}}$ is an ideal in $\mathcal{O}_{K, \mathfrak{p}}$, and that its complement consists of $\left(\mathcal{O}_{K, \mathfrak{p}}\right)^{\times}$. Conclude that $\mathcal{O}_{K, \mathfrak{p}}$ is a local ring: it has a unique maximal ideal.
RMK The localization of any ring at a prime ideal is a local ring.
(c) Let $x \in K^{\times}$. By considering the prime factorization of the fractional ideal (x) show that at least one of $x, x^{-1} \in \mathcal{O}_{K, \mathfrak{p}}$.
DEF A subring of a field satisfying the property of (c) is called a valuation ring.
$(* * \mathrm{~d})$ Show that every ideal of $\mathcal{O}_{K, \mathfrak{p}}$ is of the form $\left(\mathfrak{p} \mathcal{O}_{K, \mathfrak{p}}\right)^{k}$ for some $k \geq 0$.
(e) Let L be a finite extension of K. Show that $\left\{\left.\frac{x}{s} \right\rvert\, x \in \mathcal{O}_{L}, s \in \mathcal{O}_{K} \backslash \mathfrak{p}\right\}$ is a subring of L (the localization of \mathcal{O}_{L} at \mathfrak{p}), finitely generated as an $\mathcal{O}_{K, \mathfrak{p}}$-module, and use the structure theory of modules over a PID to conclude that it is of the form $\mathcal{O}_{K, \mathfrak{p}}^{n}$ where $n=[L: K]$.

Completion

7. Let (X, d) be a metric space, (\hat{X}, \hat{d}) its metric completion. Let $\left(Y, d_{Y}\right)$ be a complete metric space.
(a) Let $f: X^{n} \rightarrow Y$ be uniformly continuous on balls: Given $z \in X$ and $\varepsilon, R>0$ there is $\delta>0$ such that if $\underline{x}, \underline{x}^{\prime} \in \mathbb{R}^{n}$ satisfy for all i that $d\left(x_{i}, x_{i}^{\prime}\right)<\delta$ for $d\left(z, x_{i}\right), d\left(z, x_{i}^{\prime}\right) \leq R$ then

$$
d_{Y}\left(f(\underline{x}), f\left(\underline{x}^{\prime}\right)\right)<\varepsilon
$$

Show that f extends uniquely to a continuous function $\hat{f}: \hat{X}^{n} \rightarrow Y$.
(b) Suppse that X is also a group, and that the map $\left(x, x^{\prime}\right) \rightarrow x^{-1} x^{\prime}$ is uniformly continuous. Show that \hat{X} has a unique group structure continuosly extending that of X.
(c) In the setting of B, let $H<X$ be a subgroup. Show that the closure of H in \hat{X} is a subgroup, and that if H is normal in X then the closure is normal in \hat{X}.

