Math 538: Problem Set 2

Do a good amount of problems; choose problems based on what you already know and what you need to practice. Examples are important.

Ideals and primes

Problems 1-2 are good for you, but not essential for submission. Fix a ring R

- 1. (The product operation on ideals)
 - (a) Show that the operation of multiplication of ideals in *R* is commutative and associative, and has the identity element *R*. If *R* is an integral domain show that $IJ \neq (0)$ unless I = (0) or J = (0).
 - (b) Now let P, I, J be ideals of R with P prime and $P \supset IJ$. Show that $P \supset I$ or $P \supset J$.
 - (c) Extend (b) to the case of $P \supset \prod_{i=1}^{n} I_i$ where I_i is a finite set of ideals.
- 2. (Review: The CRT)
 - (a) Let I_1, \ldots, I_k be ideals, and suppose that $I_i + I_j = R$ where $i \neq j$. Show that $\prod_{i=1}^k I_i = \bigcap_{i=1}^k I_i$ and that the natural map $R / \bigcap_{i=1}^k I_i \to \bigoplus_{i=1}^k R / I_i$ is a well-defined isomorphism of rings.
 - (b) Suppose that $\sum_{i=1}^{k} I_i = R$, and let $n_i \in \mathbb{Z}_{\geq 1}$. Show that $\sum_{i=1}^{k} I_i^{n_i} = R$.

Unique factorization

Let L/K be an extension of number fields.

- 3. (Primes above and below)
 - (a) Let $\mathfrak{A} \triangleleft \mathcal{O}_L$ be a non-zero proper ideal. Show that $\mathfrak{A} \cap K = \mathfrak{A} \cap \mathcal{O}_K$ and that this is a non-zero proper ideal of \mathcal{O}_K .
 - (b) Let $\mathfrak{P} \triangleleft \mathcal{O}_L$ be a non-zero prime ideal. Show that $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_K$ is a prime ideal of \mathcal{O}_K . We say that \mathfrak{P} *lies above* \mathfrak{p} and write $\mathfrak{P}|\mathfrak{p}$.
 - (c) Show that \mathfrak{P} lies above \mathfrak{p} iff $\mathfrak{P}|\mathfrak{p}\mathcal{O}_L$ as ideals of \mathcal{O}_L .
- 4. The map $\mathfrak{a} \mapsto \mathfrak{a} \mathcal{O}_K$.
 - (a) Let $\mathfrak{a} \triangleleft \mathcal{O}_K$ be a proper ideal. Show that there is $\gamma \in K \setminus \mathcal{O}_K$ such that $\gamma \mathfrak{a} \subset \mathcal{O}_K$, and conclude that $\mathfrak{a}\mathcal{O}_L$ is a proper ideal of \mathcal{O}_L .
 - (a) Let $\mathfrak{a}, \mathfrak{b}$ be (fractional) ideals of \mathcal{O}_K . Show that $(\mathfrak{ab}) \mathcal{O}_L = (\mathfrak{a} \mathcal{O}_L) (\mathfrak{b} \mathcal{O}_L)$.
 - (b) Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_K . Comparing prime factorizations in $\mathcal{O}_K, \mathcal{O}_L$ show that $\mathfrak{a}\mathcal{O}_L | \mathfrak{b}\mathcal{O}_L \Rightarrow \mathfrak{a}|\mathfrak{b}$. Conclude that the map $\mathfrak{a} \to \mathfrak{a}\mathcal{O}_L$ is injective on fractional ideals.
 - (c) Let \mathfrak{a} be an ideal of \mathcal{O}_K . Show that $\mathfrak{a}\mathcal{O}_L \cap \mathcal{O}_K = \mathfrak{a}$.

An example

- 5. (Dedekind) Let $K = \mathbb{Q}(\theta)$ where θ is a root of $f(x) = x^3 x^2 2x 8$.
 - (a) Show that f is irreducible over \mathbb{Q} .
 - (b) Verify that $\eta = \frac{\theta^2 + \theta}{2}$ satisfies $\eta^3 3\eta^2 10\eta 8 = 0$.
 - (c) Show that $1, \theta, \eta$ are linearly independent over \mathbb{Q} .
 - (d) Let $M = \mathbb{Z} \oplus \mathbb{Z}\theta \oplus \mathbb{Z}\eta$ and let $N = \mathbb{Z}[\theta] = \mathbb{Z} \oplus \mathbb{Z}\theta \oplus \mathbb{Z}\theta^2$. Show that $N \subset M \subset \mathcal{O}_K$.
 - (f) Calculate $D_{K/\mathbb{Q}}(M)$, $D_{K/\mathbb{Q}}(N)$ (hint: $D_{K/\mathbb{Q}}(N) = -4 \cdot 503$).

- (h) Show that $M = \mathcal{O}_K$ *Hint*: Let $\{\alpha, \beta, \gamma\}$ be an integral basis and consider $\frac{d_{K/\mathbb{Q}}(1, \theta, \eta)}{d_{K/\mathbb{Q}}(\alpha, \beta, \gamma)}$.
- (i) Let $\delta = A + B\theta + C\eta$ with $A, B, C \in \mathbb{Z}$. Show that $2|d_{K/\mathbb{Q}}(\mathbb{Z}[\delta])$, and conclude that $\mathbb{Z}[\delta] \neq \mathcal{O}_K$.

Localization

- 6. (Localization at a prime) Let $\mathfrak{p} \triangleleft \mathcal{O}_K$ be a prime of *K*.
 - (a) Show that $\mathcal{O}_{K,\mathfrak{p}} = \left\{ \frac{\alpha}{s} \mid \alpha, s \in \mathcal{O}_K, s \notin \mathfrak{p} \right\}$ is a subring of *K*. It is called the *localization* of \mathcal{O}_K at \mathfrak{p} .
 - (b) Show that $\mathfrak{p}\mathcal{O}_{K,\mathfrak{p}}$ is an ideal in $\mathcal{O}_{K,\mathfrak{p}}$, and that its complement consists of $(\mathcal{O}_{K,\mathfrak{p}})^{\times}$. Conclude that $\mathcal{O}_{K,\mathfrak{p}}$ is a *local ring*: it has a unique maximal ideal.
 - RMK The localization of any ring at a prime ideal is a local ring.
 - (c) Let $x \in K^{\times}$. By considering the prime factorization of the fractional ideal (*x*) show that at least one of $x, x^{-1} \in \mathcal{O}_{K,p}$.
 - DEF A subring of a field satisfying the property of (c) is called a valuation ring.
 - (**d) Show that every ideal of $\mathcal{O}_{K,\mathfrak{p}}$ is of the form $(\mathfrak{p}\mathcal{O}_{K,\mathfrak{p}})^k$ for some $k \ge 0$.
 - (e) Let *L* be a finite extension of *K*. Show that $\{\frac{x}{s} \mid x \in \mathcal{O}_L, s \in \mathcal{O}_K \setminus \mathfrak{p}\}$ is a subring of *L* (the localization of \mathcal{O}_L at \mathfrak{p}), finitely generated as an $\mathcal{O}_{K,\mathfrak{p}}$ -module, and use the structure theory of modules over a PID to conclude that it is of the form $\mathcal{O}_{K,\mathfrak{p}}^n$ where n = [L : K].

Completion

- 7. Let (X,d) be a metric space, (\hat{X},\hat{d}) its metric completion. Let (Y,d_Y) be a complete metric space.
 - (a) Let $f: X^n \to Y$ be uniformly continuous on balls: Given $z \in X$ and $\varepsilon, R > 0$ there is $\delta > 0$ such that if $\underline{x}, \underline{x}' \in \mathbb{R}^n$ satisfy for all *i* that $d(x_i, x'_i) < \delta$ for $d(z, x_i), d(z, x'_i) \leq R$ then

$$d_Y\left(f(\underline{x}), f(\underline{x}')\right) < \varepsilon$$

Show that *f* extends uniquely to a continuous function $\hat{f}: \hat{X}^n \to Y$.

- (b) Suppose that X is also a group, and that the map $(x, x') \to x^{-1}x'$ is uniformly continuous. Show that \hat{X} has a unique group structure continuously extending that of X.
- (c) In the setting of *B*, let H < X be a subgroup. Show that the closure of *H* in \hat{X} is a subgroup, and that if *H* is normal in *X* then the closure is normal in \hat{X} .