Math 223: Problem Set 12 (due 30/11/2012)

Practice problems
Section 6.1

1. Let $S=\left\{\left(\begin{array}{l}i \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ i+1 \\ 1-2 i\end{array}\right),\left(\begin{array}{c}0 \\ 5+2 i \\ 1+2 i\end{array}\right)\right\} \subset \mathbb{C}^{3}$.
(a) Calculate the 9 pairwise inner prtoducts of the vectors.
(b) Calculate the norms of the three vectors (recall that $\|\underline{x}\|=\sqrt{\langle\underline{x}, \underline{x}\rangle})$.
2. Let $S=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)\right\} \subset \mathbb{R}^{3}$.
(a) Verify that this is an orthonormal basis of \mathbb{R}^{3}.
(b) Find the coordinates of the vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}5 \\ 6 \\ 7\end{array}\right)$ in this basis.
3. Find an orthonormal basis for the subspace $W^{\perp} \subset \mathbb{R}^{4}$ if $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)\right\}$.
4. Using the standard $\left(L^{2}\right)$ inner product on $C(-1,1)$ apply the Gram-Schmidt procedure to the following independent sequences:
(a) $\left\{1, x, x^{2}\right\}$ (in that order)

RMK Applying the Gram-Schmidt procedure to the full sequence $\left\{x^{n}\right\}_{n=0}^{\infty}$ yields the sequence of Legendre polynomials $P_{n}(x)$ (with a non-standard normalizatin).
(b) $\left\{x^{2}, x, 1\right\}$ (in that order)

PRAC In each case apply the Gram-Schmidt procedure to the first few members of the sequence $\left\{1, x, x^{2}, \cdots\right\}$ with respect to the given inner product on $\mathbb{R}[x]$.
(a) (Hermit polynomials) $\langle f, g\rangle=\int_{-\infty}^{+\infty} f(x) g(x) e^{-x^{2}} \mathrm{~d} x$.
(b) (Laguerre polynomials) $\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} \mathrm{~d} x$.

Cauchy-Schwarz

SUPP Use induction on n to establish Lagrange's identity: for all $\underline{a}, \underline{b} \in \mathbb{R}^{n}$:

$$
\|\underline{a}\|^{2}\|\underline{b}\|^{2}-(\langle\underline{a}, \underline{b}\rangle)^{2}=\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}=\sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}
$$

(note that the Cauchy-Schwarz inequality for \mathbb{R}^{n} follows immediately)
5.
(a) Let $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ be n real numbers. Applying the CS inequality to the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1, \ldots, 1)$, show that $\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$.

RMK The quantities $\frac{1}{n} \sum_{i=1}^{n} x_{i}, \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}}$ are called respectively the expectation and standard deviation of the random variable that takes the values x_{i} with equal probability $\frac{1}{n}$.
(**b) Let $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ be positive. The Arithmetic Mean of these numbers is the number AM $=$ $\frac{1}{n} \sum_{i=1}^{n} x_{i}$. The Harmonic Mean is the number $\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}$. Show the inequalithy of the means $\mathrm{HM} \leq \mathrm{AM}$ (with equality iff all the x_{i} are equal) by applying the CS inequality to suitable vectors.

Diagonalization

PRAC Check that the eigenvectors of the matrix $\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right)$ from PS10 are orthogonal.
6. Let $A \in M_{n}(\mathbb{C})$ be diagonable. Show that there exists $B \in M_{n}(\mathbb{C})$ such that $B^{2}=A$.

Orthogonality

7. Let V be an inner product space, $W \subset V$ a subset.
(a) Show that $\underline{w}^{\perp}=\{\underline{v} \in V \mid\langle\underline{w}, \underline{\nu}\rangle=0\}$ is a subset of V for any $\underline{w} \in V$ (Hint: is this the kernel of something?)
(b) Show that $W^{\perp}=\{\underline{v} \in V \mid\langle\underline{w}, \underline{v}\rangle=0$ for all $\underline{w} \in W\}$ is a subspace of V.
(c) Show that $W^{\perp} \cap \operatorname{Span}_{F} W=\{\underline{0}\}$.

Supplementary problem: Fourier series

A In this problem we use the standard inner product on $C(-\pi, \pi)$.
(a) Show that $\left\{\frac{1}{\sqrt{2 \pi}}\right\} \cup\left\{\frac{1}{\sqrt{\pi}} \cos (n x), \frac{1}{\sqrt{\pi}} \sin (n x)\right\}_{n=1}^{\infty}$ is an orthonormal system there.
(b) Let a_{0}, a_{n}, b_{n} be the coefficient of $f(x)=2 \pi|x|-x^{2}$ with respect to $\frac{1}{\sqrt{2 n}}, \frac{1}{\sqrt{\pi}} \cos (n x)$, $\frac{1}{\sqrt{\pi}} \sin (n x)$. Find these.
(c) Show that for any x, 1the series $\frac{1}{\sqrt{2 \pi}} a_{0}+\frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$ is absolutely convergent.
FACT1 The system above is complete, in that the only function orthogonal to the span is the zero function. If we denote the partial sums $\left(S_{N} f\right)(x)=a_{0} \frac{1}{\sqrt{2 \pi}}+\frac{1}{\sqrt{\pi}} \sum_{n=1}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)$, this shows $S_{N} f \underset{N \rightarrow \infty}{\longrightarrow} f$ "on average" in the sense that $\left\|f-S_{N} f\right\|_{L^{2}(-\pi, \pi)}^{2}=\int_{-\pi}^{\pi}\left|f(x)-\left(S_{N} f\right)(x)\right|^{2} \mathrm{~d} x \xrightarrow[N \rightarrow 0]{ }$ 0 (in fact, this holds for any f such that $\left.\int_{-\pi}^{+\pi}|f(x)|^{2} \mathrm{~d} x<\infty\right)$.
FACT2 For any $x \in(-\pi, \pi)$ if the sequence of real numbers $\left\{\left(S_{N} f\right)(x)\right\}_{N=1}^{\infty}$ converges, and if f is continuous at x, then limit of the sequencee is $f(x)$.
(d) Conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, a discover of Euler's.

