Math 223: Problem Set 11 (due 23/11/2012)

Practice problems

Section 6.1

PRAC Write down some matrix $A \in M_4(\mathbb{R})$ such that A has four distinct eigenvalues (your choice)

with the correspoding eigenvectors being

$$\begin{pmatrix} 1\\2\\0\\3 \end{pmatrix}, \begin{pmatrix} 2\\4\\1\\6 \end{pmatrix}, \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}.$$

Real vs Complex eigenvalues

- 1. (a) Let V be a real vector space of odd dimension. Prove that every $T \in \text{End}(V)$ has a real eigenvalue.
 - (b) Define $T : \mathbb{R}[x]^{\leq 3} \to \mathbb{R}[x]^{\leq 3}$ by $(Tp)(x) = x^3p(-1/x)$. Prove that *T* has no real eigenvalues. (Hint: what is T^2 ?)
 - (c) Define $T: \mathbb{C}[x]^{\leq 3} \to \mathbb{C}[x]^{\leq 3}$ by $(Tp)(x) = x^3p(-1/x)$. Find the spectrum of T and exhibit one eigenvector for each eigenvalue.

Commuting maps

- 2. Fix a vector space V and let $T, S \in \text{End}(V)$ satisfy TS = ST. (a) Suppose that $T\underline{v} = \lambda \underline{v}$ for some λ and $\underline{v} \in V$. Show that $T(S\underline{v}) = \lambda (S\underline{v})$. CONCLUSION Let $V_{\lambda} = \{\underline{v} \in V \mid T\underline{v} = \lambda \underline{v}\}$. Then $S(V_{\lambda}) \subset V_{\lambda}$.
 - (b) Let $H = -\frac{d^2}{dx^2} + M_{x^2}$ be the operator on functions on \mathbb{R} . associated to the quantum harmonic oscillator, and let *P* be the operator of reflection at the origin ((Pf)(x) = f(-x)). Explain why we can assume that a basis of eigenfunctions of *H* consists of functions of *definite parity* (i.e. either even or odd).

Inner products and norms

- 3. The *trace* of a square matrix is the sum of its diagonal entries (trA = ∑_{i=1}ⁿ a_{ii}). PRAC Show that tr: M_n(ℝ) → ℝ is a linear functional.
 (a) Show that for any two square matrices A, B we have tr(AB) = tr(BA). (**b) Find three 2x2 matrices A, B, C such that tr(ABC) ≠ tr(BAC).
 (c) Show that tr(S⁻¹AS) = tr(A) if S is invertible.
 PRAC Show that ⟨A, B⟩ ^{def} tr (A^tB) is an inner product on M_n(ℝ)
 DEF For A ∈ M_{m,n}(ℂ), its *Hermitian conjuate* is the matrix A[†] ∈ M_{n,m}(ℂ) with entries a[†]_{ij} = ā_{ji} (complex conjuguate).
 - (d) Show that $\langle A, B \rangle \stackrel{\text{def}}{=} \operatorname{tr} (A^{\dagger}B)$ is a Hermitian product on $M_n(\mathbb{C})$.

DEFINITION. Let *V* be a real or complex vector space. A *norm* (="notion of length") on *V* is a map $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ such that

- (1) $||a\underline{v}|| = |a| ||\underline{v}||$ (that is, $3\underline{v}$ is three times as long as \underline{v})
- (2) $\|\underline{u} + \underline{v}\| \le \|\underline{u}\| + \|\underline{v}\|$ ("triangle inequality")
- (3) $\|\underline{v}\| = 0$ iff $\underline{v} = \underline{0}$ (note that one direction follows from (1)).
- 4. (Examples of norms)

- (a) Show that ||x||_∞ = max_i |x_i| is a norm on ℝⁿ or ℂⁿ.
 (b) Show that ||f||_∞ = max_{a≤x≤b} |f(x)| is a norm on C(a,b) (continuous functions on the interval [a,b]).
- (c) (Sobolev norm) Show that $||f||_{H^1}^2 = \int_a^b (|f(x)|^2 + |f'(x)|^2) dx$ defines a norm on $C^{\infty}(a,b)$ (Hint: this norm is associated to an inner product)

Supplementary problem: the minimal polynomial

A. (Division with remainder) Let $p, a \in \mathbb{R}[x]$ with *a* non-zero. Show that there are unique $q, r \in \mathbb{R}[x]$ with deg $r < \deg a$ such that p = qa + r. (Hint: let *r* be an element of minimal degree in the set $\{p - aq \mid q \in \mathbb{R}[x]\}$).

B. Let $A \in M_n(\mathbb{R})$.

- (a) Show that there exists a non-zero $p \in \mathbb{R}[x]^{\leq n^2}$ such that p(A) = 0.
- DEF A polynomial is *monic* if the highest-degree monomial has coefficient 1 (x^2 + 3 is monic, $2x^2$ + 3 is not).
- (b) Rescaling the polynomial, show that there exists a monic polynomial p' of the same degree as p such that p'(A) = 0.
- (c) Let $m_A \in \mathbb{R}[x]$ be a monic polynomial of minimal degree such that $m_A(A) = 0$. Let p be any polynomial such that p(A) = 0. Show that m divides p.
- (d) Let m'_A be another monic polynomial of the same degree as m_A such that $m'_A(A) = 0$. Show that $m'_A = m_A$ (Hint: what is the degree of the difference?)
- DEF m_A is called the *minimal polynomial* of A (saying "the" minimal polynomial is justified by part c).
- (e) Conversely, show that if $p = m_A q$ for some $q \in \mathbb{R}[x]$ then p(A) = 0. Conclude that $\{p \in \mathbb{R}[x] \mid p(A) = 0\} = m_A \mathbb{R}[x] = \{m_A q \mid q \in \mathbb{R}[x]\}.$
- RMK The Cayley–Hamilton Theorem states that $p_A(A) = 0$. It follows that deg $m_A \le n$ and that $m_A | p_A$.

Supplementary problem: The Rayleigh quotient

- C. Given a matrix $A \in M_n(\mathbb{R})$ consider the function $f \colon \mathbb{R}^n \to \mathbb{R}$ given by $f(\underline{x}) = \underline{x}^t A \underline{x} = \sum_{i,j=1}^n a_{ij} x_i x_j$. We introduce the notation $\|\underline{x}\|_2^2 = \sum_{i=1}^n x_i^2$.
 - (a) Show that $(\nabla f)(\underline{x}) = A\underline{x} + A^t\underline{x}$.
 - (b) Let \underline{v} be the point where f attains its maximum on the unit sphere $S^{n-1} = \{\underline{x} \in \mathbb{R}^n \mid ||\underline{x}|| = 1\}$. Use the method of Largrange multipliers to show that \underline{v} satisfies $A\underline{v} + A^t\underline{v} = \lambda\underline{v}$ for some $\lambda \in \mathbb{R}$.
 - (c) A matrix is symmetric if $A = A^{t}$. Show that every symmetric matrix has a real eigenvalue.
 - (d) Show that the following two maximization problems are equivalent:

$$\max\left\{f(\underline{x}) \mid \|\underline{w}\|_2 = 1\right\} \leftrightarrow \max\left\{\frac{f(\underline{x})}{\|\underline{x}\|_2^2} \mid \underline{x} \neq \underline{0}\right\}.$$