Math 223: Problem Set 11 (due 23/11/2012)

Practice problems

Section 6.1
PRAC Write down some matrix $A \in M_{4}(\mathbb{R})$ such that A has four distinct eigenvalues (your choice)
with the correspoding eigenvectors being $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 1 \\ 6\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 2\end{array}\right)$.

Real vs Complex eigenvalues

1. (a) Let V be a real vector space of odd dimension. Prove that every $T \in \operatorname{End}(V)$ has a real eigenvalue.
(b) Define $T: \mathbb{R}[x]^{\leq 3} \rightarrow \mathbb{R}[x]^{\leq 3}$ by $(T p)(x)=x^{3} p(-1 / x)$. Prove that T has no real eigenvalues. (Hint: what is T^{2} ?)
(c) Define $T: \mathbb{C}[x]^{\leq 3} \rightarrow \mathbb{C}[x]^{\leq 3}$ by $(T p)(x)=x^{3} p(-1 / x)$. Find the spectrum of T and exhibit one eigenvector for each eigenvalue.

Commuting maps

2. Fix a vector space V and let $T, S \in \operatorname{End}(V)$ satisfy $T S=S T$.
(a) Suppose that $T \underline{v}=\lambda \underline{v}$ for some λ and $\underline{v} \in V$. Show that $T(S \underline{v})=\lambda(S \underline{v})$.

CONCLUSION Let $V_{\lambda}=\{\underline{v} \in V \mid T \underline{v}=\lambda \underline{v}\}$. Then $S\left(V_{\lambda}\right) \subset V_{\lambda}$.
(b) Let $H=-\frac{d^{2}}{d x^{2}}+M_{x^{2}}$ be the operator on functions on \mathbb{R}. associated to the quantum harmonic oscillator, and let P be the operator of reflection at the origin $((P f)(x)=f(-x))$. Explain why we can assume that a basis of eigenfunctions of H consists of functions of definite parity (i.e. either even or odd).

Inner products and norms

3. The trace of a square matrix is the sum of its diagonal entries $\left(\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}\right)$.

PRAC Show that $\operatorname{tr}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is a linear functional.
(a) Show that for any two square matrices A, B we have $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(**b) Find three $2 x 2$ matrices A, B, C such that $\operatorname{tr}(A B C) \neq \operatorname{tr}(B A C)$.
(c) Show that $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}(A)$ if S is invertible.

PRAC Show that $\langle A, B\rangle \stackrel{\text { def }}{=} \operatorname{tr}\left(A^{t} B\right)$ is an inner product on $M_{n}(\mathbb{R})$
DEF For $A \in M_{m, n}(\mathbb{C})$, its Hermitian conjuate is the matrix $A^{\dagger} \in M_{n, m}(\mathbb{C})$ with entries $a_{i j}^{\dagger}=\overline{a_{j i}}$ (complex conjuguate).
(d) Show that $\langle A, B\rangle \stackrel{\text { def }}{=} \operatorname{tr}\left(A^{\dagger} B\right)$ is a Hermitian product on $M_{n}(\mathbb{C})$.

Definition. Let V be a real or complex vector space. A norm (="notion of length") on V is a map $\|\cdot\|: V \rightarrow \mathbb{R}_{\geq 0}$ such that
(1) $\|a \underline{a}\|=|a|\|\underline{v}\|$ (that is, $3 \underline{v}$ is three times as long as \underline{v})
(2) $\|\underline{u}+\underline{v}\| \leq\|\underline{u}\|+\|\underline{v}\|$ ("triangle inequality")
(3) $\|\underline{v}\|=0$ iff $\underline{v}=\underline{0}$ (note that one direction follows from (1)).
4. (Examples of norms)
(a) Show that $\|\underline{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$ is a norm on \mathbb{R}^{n} or \mathbb{C}^{n}.
(b) Show that $\|f\|_{\infty}=\max _{a \leq x \leq b}|f(x)|$ is a norm on $C(a, b)$ (continuous functions on the interval $[a, b]$).
(c) (Sobolev norm) Show that $\|f\|_{H^{1}}^{2}=\int_{a}^{b}\left(|f(x)|^{2}+\left|f^{\prime}(x)\right|^{2}\right) \mathrm{d} x$ defines a norm on $C^{\infty}(a, b)$ (Hint: this norm is associated to an inner product)

Supplementary problem: the minimal polynomial

A. (Division with remainder) Let $p, a \in \mathbb{R}[x]$ with a non-zero. Show that there are unique $q, r \in$ $\mathbb{R}[x]$ with $\operatorname{deg} r<\operatorname{deg} a$ such that $p=q a+r$. (Hint: let r be an element of minimal degree in the set $\{p-a q \mid q \in \mathbb{R}[x]\})$.
B. Let $A \in M_{n}(\mathbb{R})$.
(a) Show that there exists a non-zero $p \in \mathbb{R}[x] \leq n^{2}$ such that $p(A)=0$.

DEF A polynomial is monic if the highest-degree monomial has coefficient $1\left(x^{2}+3\right.$ is monic, $2 x^{2}+3$ is not).
(b) Rescaling the polynomial, show that there exists a monic polynomial p^{\prime} of the same degree as p such that $p^{\prime}(A)=0$.
(c) Let $m_{A} \in \mathbb{R}[x]$ be a monic polynomial of minimal degree such that $m_{A}(A)=0$. Let p be any polynomial such that $p(A)=0$. Show that m divides p.
(d) Let m_{A}^{\prime} be another monic polynomial of the same degree as m_{A} such that $m_{A}^{\prime}(A)=0$. Show that $m_{A}^{\prime}=m_{A}$ (Hint: what is the degre of the difference?)
DEF m_{A} is called the minimal polynomial of A (saying "the" minimal polynomial is justified by part c).
(e) Conversely, show that if $p=m_{A} q$ for some $q \in \mathbb{R}[x]$ then $p(A)=0$. Conclude that $\{p \in \mathbb{R}[x] \mid p(A)=0\}=m_{A} \mathbb{R}[x]=\left\{m_{A} q \mid q \in \mathbb{R}[x]\right\}$.
RMK The Cayley-Hamilton Theorem states that $p_{A}(A)=0$. It follows that $\operatorname{deg} m_{A} \leq n$ and that $m_{A} \mid p_{A}$.

Supplementary problem: The Rayleigh quotient

C. Given a matrix $A \in M_{n}(\mathbb{R})$ consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(\underline{x})=\underline{x}^{t} A \underline{x}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$. We introduce the notation $\|\underline{x}\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2}$.
(a) Show that $(\nabla f)(\underline{x})=A \underline{x}+A^{t} \underline{x}$.
(b) Let \underline{v} be the point where f attains its maximum on the unit sphere $S^{n-1}=\left\{\underline{x} \in \mathbb{R}^{n} \mid\|\underline{x}\|=1\right\}$. Use the method of Largrange multipliers to show that \underline{v} satisfies $A \underline{v}+A^{t} \underline{v}=\lambda \underline{v}$ for some $\lambda \in \mathbb{R}$.
(c) A matrix is symmetric if $A=A^{t}$. Show that every symmetric matrix has a real eigenvalue.
(d) Show that the following two maximization problems are equivalent:

$$
\max \left\{f(\underline{x}) \mid\|\underline{w}\|_{2}=1\right\} \leftrightarrow \max \left\{\left.\frac{f(\underline{x})}{\|\underline{x}\|_{2}^{2}} \right\rvert\, \underline{x} \neq \underline{0}\right\}
$$

