Math 223: Problem Set 10

Practice problems

PRAC Let $T, T^{\prime} \in \operatorname{End}(V)$ be similar. Show that $p_{T}(x)=p_{T^{\prime}}(x)$.

Calculation

1. Find the characteristic polynomial of the following matrices.
(a) $\left(\begin{array}{cc}5 & 7 \\ -3 & 2\end{array}\right)$ (b) $\left(\begin{array}{cc}\pi & e \\ \sqrt{7} & 0\end{array}\right)$ (c) $\left(\begin{array}{ccccc}0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -a_{0} & \cdots & \cdots & -a_{n-2} & -a_{n-1}\end{array}\right)$.
2. For each of the following matrices find its spectrum and a basis for each eigenspace.
(a) $\left(\begin{array}{lll}5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2\end{array}\right)$ (b) $\frac{1}{3}\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right)$ (Hint)

Projections

Fix a vector space V.
3. Let $T \in \operatorname{End}(V), p \in \mathbb{R}[x]$ and suppose that $p(T)=0$. Show that $p(\lambda)=0$ for all eigenvalues λ of V. (Hint: apply a result from PS9)
4. Let $P \in \operatorname{End}(V)$ satisfy $P^{2}=P$. Such maps are called projections.
(a) Show that $\operatorname{Spec}(P) \subset\{0,1\}$.
(b) Show that $(I-P)$ is a projection as well.
(c) Show $V_{1}=\operatorname{Im} P$.
(*d) Note that $V_{0}=\operatorname{Ker} P$ by definition. Show that $V_{0}=\operatorname{Im}(I-P)$ and conclude that $V=$ $V_{0} \oplus V_{1}$. (Hint)
(*e) Let $V_{0}, V_{1} \subset V$ be suchspaces such that $V=V_{0} \oplus V_{1}$. Show that there exists a $P \in \operatorname{End}(V)$ such that $P\left(\underline{v}_{0}\right)=\underline{0}, P\left(\underline{v}_{1}\right)=\underline{v}_{1}$ for all $\underline{v}_{i} \in V_{i}$, and that this P is a projection.
DEF This P is called the projection onto V_{1} along V_{0}.
(f) Let $V_{0}=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\} V_{1}=\operatorname{Span}\left\{\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ so that $\mathbb{R}^{3}=V_{0} \oplus V_{1}$ [check for yourself]. Let P be the projection onto V_{1} along V_{0}. Find the matrix of P with respect to the standard basis of \mathbb{R}^{3}.

Hint for 2b: If $A \underline{v}=\lambda \underline{v}$ then $\left.\left(\frac{1}{3} A\right) \underline{v}=\frac{\lambda}{3} \underline{v}\right)$
Hint for 4d: $P+(I-P)=I$

Practice: Parity

PRAC In physics a "parity operator" is a map $P \in \operatorname{End}(V)$ such that $P^{2}=\mathrm{Id}_{V}$.
(a) Show that $\pm \mathrm{Id}_{V}$ are (uninteresting) parity operators.
(b) Show that the eigenvalues of a parity operator are in $\{ \pm 1\}$. Let $V_{ \pm}$be the corresponding eigenspaces.
(c) Let P be a parity operator. Show that $\frac{I+P}{2}, \frac{I-P}{2}$ are projections onto V_{+}, V_{-}along the other subspace, respectively.
(d) Conclude that $V=V_{+} \oplus V_{-}$and hence that every parity operator is diagonalizable.
(e) Let X be a set and let $\tau: X \rightarrow X$ be an involution: a map such that $\tau^{2}=\operatorname{Id}_{X}$. Let $P_{\tau} \in$ $\operatorname{End}\left(\mathbb{R}^{X}\right)$ be the map $f \mapsto f \circ \tau$. Show that P_{τ} is a parity operator.
(f) Let $X=\mathbb{R}, \tau(x)=-x$. Explain how (a)-(e) relate to the concepts of odd and even functions.

Supplementary problem: Nilpotent operators

A Let $N \in \operatorname{End}(V)$.
(a) Define subspaces $W_{k} \subset V$ by $W_{0}=V$ and $W_{k+1}=N W_{k}$. Show that $W_{k}=\operatorname{Im}\left(N^{k}\right)$.
(b) Suppose that $W_{k+1} \subsetneq W_{k}$ for $0 \leq k \leq K-1$. Show that $\operatorname{dim} V \geq K$.
(c) Show that either the sequence $\left\{W_{k}\right\}_{k=0}^{\infty}$ reaches zero after at most $\operatorname{dim} V$ steps or there is a non-zero subspace $W \subset V$ such that $N W=W$.
(d) Suppose that $N^{k}=0$ for some large k. Show that $N^{n}=0$ where $n=\operatorname{dim} V$.

DEF N such that $N^{k}=0$ is called nilpotent
(e) Find the spectrum of a nilpotent operator.

Supplementary problem: The Quantum Harmonic Oscillator
TBA

