Math 223: Problem Set 10

Practice problems

PRAC Let $T, T' \in \text{End}(V)$ be similar. Show that $p_T(x) = p_{T'}(x)$.

Calculation

1. Find the characteristic polynomial of the following matrices.

(a)
$$\begin{pmatrix} 5 & 7 \\ -3 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} \pi & e \\ \sqrt{7} & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ -a_0 & \cdots & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}$

- 2. For each of the following matrices find its spectrum and a basis for each eigenspace.
 - (a) $\begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ (b) $\frac{1}{3} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ (Hint)

Projections

Fix a vector space V.

- 3. Let $T \in \text{End}(V)$, $p \in \mathbb{R}[x]$ and suppose that p(T) = 0. Show that $p(\lambda) = 0$ for all eigenvalues λ of *V*. (*Hint*: apply a result from PS9)
- 4. Let $P \in \text{End}(V)$ satisfy $P^2 = P$. Such maps are called *projections*.
 - (a) Show that $\operatorname{Spec}(P) \subset \{0, 1\}$.
 - (b) Show that (I P) is a projection as well.
 - (c) Show $V_1 = \text{Im} P$.
 - (*d) Note that $V_0 = \text{Ker}P$ by definition. Show that $V_0 = \text{Im}(I P)$ and conclude that $V = V_0 \oplus V_1$. (Hint)
 - (*e) Let $V_0, V_1 \subset V$ be such spaces such that $V = V_0 \oplus V_1$. Show that there exists a $P \in \text{End}(V)$ such that $P(\underline{v}_0) = \underline{0}, P(\underline{v}_1) = \underline{v}_1$ for all $\underline{v}_i \in V_i$, and that this *P* is a projection.
 - DEF This *P* is called the *projection onto* V_1 *along* V_0 .
 - (f) Let $V_0 = \operatorname{Span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\} V_1 = \operatorname{Span}\left\{ \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$ so that $\mathbb{R}^3 = V_0 \oplus V_1$ [check for your-

self]. Let *P* be the projection onto V_1 along V_0 . Find the matrix of *P* with respect to the *standard basis* of \mathbb{R}^3 .

Hint for 2b: If $A\underline{v} = \lambda \underline{v}$ then $(\frac{1}{3}A) \underline{v} = \frac{\lambda}{3} \underline{v}$ Hint for 4d: P + (I - P) = I

Practice: Parity

PRAC In physics a "parity operator" is a map $P \in \text{End}(V)$ such that $P^2 = \text{Id}_V$.

- (a) Show that $\pm Id_V$ are (uninteresting) parity operators.
- (b) Show that the eigenvalues of a parity operator are in $\{\pm 1\}$. Let V_+ be the corresponding eigenspaces.
- (c) Let P be a parity operator. Show that $\frac{I+P}{2}$, $\frac{I-P}{2}$ are projections onto V_+, V_- along the other subspace, respectively.
- (d) Conclude that $V = V_+ \oplus V_-$ and hence that every parity operator is diagonalizable.
- (e) Let X be a set and let $\tau: X \to X$ be an *involution*: a map such that $\tau^2 = \operatorname{Id}_X$. Let $P_{\tau} \in$ End(\mathbb{R}^X) be the map $f \mapsto f \circ \tau$. Show that P_{τ} is a parity operator.
- (f) Let $X = \mathbb{R}$, $\tau(x) = -x$. Explain how (a)-(e) relate to the concepts of *odd* and *even* functions.

Supplementary problem: Nilpotent operators

- A Let $N \in \text{End}(V)$.
 - (a) Define subspaces $W_k \subset V$ by $W_0 = V$ and $W_{k+1} = NW_k$. Show that $W_k = \text{Im}(N^k)$.

 - (b) Suppose that W_{k+1} ⊊ W_k for 0 ≤ k ≤ K − 1. Show that dim V ≥ K.
 (c) Show that either the sequence {W_k}[∞]_{k=0} reaches zero after at most dim V steps or there is a non-zero subspace $W \subset V$ such that NW = W.
 - (d) Suppose that $N^k = 0$ for some large k. Show that $N^n = 0$ where $n = \dim V$.
 - DEF N such that $N^k = 0$ is called *nilpotent*
 - (e) Find the spectrum of a nilpotent operator.

Supplementary problem: The Quantum Harmonic Oscillator

TBA