Math 223: Problem Set 9 – All for practice

DO NOT SUBMIT these problems.

(1),(2),(3) practice calculating determinants recursively. The Vandermonde determinant (3) is important beyond this course. We will use (4) repeatedly. Complex numbers practice (6) will also be useful. Problem 7 is one of my favorite problems in undergraduate mathematics, but don't spend time on it this week. Hint for 1,2,3: try what happens with small matrices (2x2, 3x3, 4x4, 5x5) before tackling the general case.

Three determinants

- 1. Fix numbers a, b and let H_n be the matrix with entries t_{ij} so that for all i, $t_{ii} = a$, $t_{i,(i-1)} = a$ $t_{i,(i+1)} = b$ (for *i* where this makes sense) and $t_{ij} = 0$ otherwise. Let $h_n = \det H_n$.
 - (a) For $n \ge 1$ show that $h_{n+2} = ah_{n+1} b^2h_n$.
 - (b) Using the methods of the lecture (codified in Problem 5 below), solve the recursion in the case a = 5, b = 2 and find a closed-form expression for h_n .
- 2. Let $H_n(d_1, \dots, d_n)$ be the matrix $J_n + \text{diag}(d_1, \dots, d_n)$ and let $h_n(d_1, \dots, d_n) = \text{det}[H_n(d_1, \dots, d_n)]$ (a) Show that $h_n(0, d_2, ..., d_n) = \prod_{j=2}^n d_j$. (Hint: subtract the second row from the first)

 - (b) Suppose that $n \ge 3$. Show that $h_n(d_1, d_2, ..., d_n) = d_1 h_{n-1}(d_2, ..., d_n) + d_2 h_{n-2}(0, d_3, ..., d_n)$. (c) Suppose that all the $d_i \ne 0$ and that $n \ge 3$. Show that $\frac{h_n(d_1, ..., d_n)}{\prod_{j=1}^n d_j} = \frac{h_{n-1}(d_2, ..., d_n)}{\prod_{j=2}^n d_j} + \frac{1}{d_1}$.

(d) Show that
$$\frac{h_2(d_1,d_2)}{d_1d_2} = \frac{1}{d_1} + \frac{1}{d_2} + 1$$
, and thus that $\frac{h_n(d_1,\dots,d_n)}{\prod_{j=1}^n d_j} = \sum_{j=1}^n \frac{1}{d_j} + 1$
CONCLUSION $h_n(d_1,\dots,d_n) = \left(\sum_{j=1}^n \frac{1}{d_j} + 1\right) \left(\prod_{j=1}^n d_j\right).$

- 3. ("Vandermonde determinant") Let x_i be variables and let $V_n(x_1, \ldots, x_n)$ be the $n \times n$ matrix with entries $v_{ij} = x_i^{j-1}$. We show that det $V_n = \prod_{i=2}^n \prod_{j=1}^i (x_i - x_j)$.

 - (a) Show that det V_n is a polynomial in x₁,...,x_n of total degree 1 + 2 + 3 + ··· + n = n(n+1)/2.
 (b) Show that det V_n vanishes whenver x_i = x_j (which leads you to suspect that x_i − x_j divides the polynomial).
 - RMK Note that $\prod_{i=2}^{n} \prod_{j=1}^{i} (x_i x_j)$ is a polynomial of total degree $\frac{n(n+1)}{2}$. It follows from (a) and the theory of polynomial rings over integral domains that $\prod_{i=2}^{n} \prod_{j=1}^{i} (x_i - x_j)$ actually does divide the determinant, and comparing degrees of the two it follows that the quotient has degree zero, that is that for some constant $c_n \in \mathbb{Z}$, det $V_n = c_n \prod_{i=2}^n \prod_{j=1}^i (x_i - x_j)$.
 - SUPP Suppose that det $V_n = c_n \prod_{i=2}^n \prod_{j=1}^i (x_i x_j)$ held for each *n*. Use the trick of setting $x_{n+1} = 0$ to show that $c_{n+1} = c_n$. Since $c_1 = 1$ this proves the main claim.
 - (b) Let $V_{n+1}(x_1, \ldots, x_{n+1})$ be the matrix described above, and let W_{n+1} be the matrix obtained by
 - (i) Subtracting the first row from each row; and then
 - (ii) For j descending from n + 1 to 2, subtracting from the jth column a multiple of the (j-1)st so as to make the top entry in the column zero.

Let $(w_{ij})_{i,j=1}^{n+1}$ be the entries of W_{n+1} . Show that $w_{11} = 1$ that $w_{1j} = w_{i1} = 0$ if $i, j \neq 1$ and that $w_{ij} = (x_i - x_1)v_{ij}$ if $i, j \ge 2$.

- (c) Show that det $V_{n+1} = \left[\prod_{i=2}^{n+1} (x_i x_1)\right] \cdot [\det V_n(x_2, \dots, x_{n+1})].$
- (d) Check that det $V_1 = 1$ and prove the main claim by induction.

Linear recurrences

- 4. Let $T \in \text{End}(V)$ and let $\underline{v} \in V$ satisfy $T\underline{v} = \lambda \underline{v}$.
 - (a) Show that $T^n \underline{v} = \lambda^n \underline{v}$ for all $n \ge 0$.
 - (b) Suppose that T is invertible and $\underline{v} \neq 0$. Show that $\lambda \neq 0$ and that $T^{-n}\underline{v} = \lambda^{-n}\underline{v}$.
 - (c) Let $p \in \mathbb{R}[x]$ be a polynomial of degree *n*. Show that $p(T)\underline{v} = p(\lambda)\underline{v}$.
- 5. Let $F_{n+k} = \sum_{i=0}^{k-1} c_i F_{n+i}$ be a recusion relation of degree k, and let $p(x) = x^k \sum_{i=0}^{k-1} c_i x^i$ be its *characteristic polynomial*.
 - (a) Explain why we generally assume $c_0 \neq 0$.
 - (b) Show that a sequence \underline{F} satisfies the recursion relation iff $p(L)\underline{F} = \underline{0}$, were $L \in \text{End}(\mathbb{R}^{\infty})$ is the left shift operator.
 - (c) Show that Ker(p(L)) is k-dimensional, and that any $\underline{F} \in \text{Ker}(p(L))$ is determined by $(F_0, F_1, \ldots, F_{k-1})$.
 - (d) Suppose that r is a root of p(x). Show that the sequence $(r^n)_{n\geq 0} \in \text{Ker}(p(L))$ and that it is non-zero.
 - FACT Any set of (non-zero) eigenvectors of a map, corresponding to distinct eigenvalues, is linearly independent.

ASSUME for the rest of the problem that p(x) has k distinct roots $\{r_i\}_{i=1}^k$.

- (e) Find a basis for Ker(p(L)).
- (f) Let $(F_0, F_1, \dots, F_{k-1})$ be any numbers. Show that the system of k equations $\sum_{i=0}^{k-1} A_i r_i^j = F_j$ $(1 \le j \le k)$ in the unkonwns A_i has a solution. (Hint: problem 2) Now do problem 1(b)

Practice with complex numbers

- 6.
- (a) Let w = a + bi be a non-zero complex number. Show that there are two complex solutions to the equation $z^2 = w$. (Hint: write z = x + yi and get a system of two equations in the unknowns x, y).
- (b) Let $a, b, c \in \mathbb{C}$ with $a \neq 0$. Show that the polynomial $az^2 + bz + c \in \mathbb{C}[z]$ factors as a product of linear polynomials. (Hint: use the quadratic formula)

Challenge: Practice with Incidence geometry

An *incidence structure* is a triple pair (P, L, \in) where *P* is a set (its elements are called *points*), *L* is a set (its elements are called "lines") and we write $p \in \ell$ if the point *p* lies on the line ℓ (is incident to it) and $p \notin \ell$ if the reverse holds. We always assume that *P*,*L* are finite.

THEOREM (De Bruin-Erdős). Suppose that for any two distinct points p, p' there is a unique line ℓ such that $p \in \ell$ and $p' \in \ell$, and that not all points are on the same line. Then there are at least as many lines as points.

- 7. Let (P,L,\in) be an incidence structure such that any two points determine a unique line.
 - (a) Suppose that for some point p there is only one line containing p. Show that this line contains all points.
 - DEF Let $T: \mathbb{R}^P \to \mathbb{R}^L$, $S: \mathbb{R}^L \to \mathbb{R}^P$ be the maps $(Tf)(\ell) = \sum_{p \in \ell} f(p)$ (sum over points on ℓ) and $(Sg)(p) = \sum_{p \in \ell} g(\ell)$ (sum over lines containing p).
 - (b) Show that T, S are linear.

- (c) Suppose that $P = \{p_i\}_{i=1}^n$ is finite. Show that the matrix of *ST* in the "standard basis" of \mathbb{R}^P (the *i*th basis vector is the function which is 1 at p_i , zero elsewhere) is $J_n + \text{diag}(d_1 1, \dots, d_n 1)$ where J_n is the all-ones matrix and d_i is the number of lines through p_i .
- (d) Suppose that not all points are on the same line. Show that det(TS) > 0.
- (e) Prove the Theorem.
- 8. Suppose that we add the axiom "every two distinct lines intersect at exactly one point".
 - (a) Show that in this case exchanging the role of points and lines gives a new incidence structure (the "dual one") satisfying the two axioms.
 - (b) Conclude that with the extra axiom there only three possibilities: (1) there is exactly one line and it contains all the points; (2) there is exactly one point and it lies on all lines; (3) there are as many lines as points

Supplementary problem: Quadratic extensions in general

- A (Constructing quadratic fields) Let F be a field, $d \in F$ such that $x^2 = d$ has no solutions in F.
 - (a) Show that the set of matrices $E = \left\{ \begin{pmatrix} a & b \\ db & a \end{pmatrix} \mid a, b \in F \right\}$ is a field.
 - (b) Show that *E* is two-dimensional over *F* with basis 1, ε where $\varepsilon = \begin{pmatrix} 1 \\ d \end{pmatrix}$ satisfies $\varepsilon^2 = d$.
 - (c) Show that the map $\sigma: E \to E$ given by $\sigma(a+b\varepsilon) = a-b\varepsilon$ satisfies $\sigma(x+y) = \sigma(x) + \sigma(y)$, $\sigma(xy) = \sigma(x)\sigma(y)$, $\sigma(a) = a$ for all $a \in F$.
 - (d) Show that the norm $Nz = z\sigma(z)$ satisfies $Nz \in F$ for all $z \in E$, $Nz \neq 0$ if $z \neq 0$, N(zw) = NzNw.
- B. (Uniqueness) Let E' be a field containing F which is spanned over F by elements $1, \varepsilon$ with $\varepsilon^2 = d$. Let $z = a + b\sqrt{d} \in E'$ be any element and let $M_z: E' \to E'$ be the map of multiplication

by z. Show that M_z is F-linear and that its matrix in the basis $\{1, \varepsilon\}$ is $\begin{pmatrix} a & b \\ db & a \end{pmatrix}$.