Math 223: Problem Set 6 (due 17/10/12)

Practice problems (recommended, but do not submit)

PRAC Let U, V, W, X be vector spaces.

- (a) Let $A \in \text{Hom}(U,V)$, $B \in \text{Hom}(W,X)$. We define maps R_A : $\text{Hom}(V,W) \to \text{Hom}(U,W)$, L_B : $\text{Hom}(V,W) \to \text{Hom}(V,X)$ and $S_{A,B}$: $\text{Hom}(V,W) \to \text{Hom}(U,X)$ by $R_A(T) = TA$, $L_B(T) = BT$, $S_{A,B}(T) = BTA$. Show that all three maps are linear.
- (b) Suppose that $A, B \in \text{Hom}(U, U)$ are invertible, with inverses A^{-1}, B^{-1} . Show that AB is invertible, with inverse $B^{-1}A^{-1}$ (note the different order!)
- (c) Let $A \in \text{Hom}(U,V)$, $B \in \text{Hom}(V,W)$. Show that $\text{Ker}(BA) \subset \text{Ker}B$ and that $\text{Im}(BA) \subset \text{Im}(B)$.
- (d) Let $A \in \text{Hom}(U, V)$, $B \in \text{Hom}(V, W)$. If *BA* is injective then so is *A*. If *BA* is surjective then so is *B*.
- PRAC Let X be a set, and let $M_g \colon \mathbb{R}^X \to \mathbb{R}^X$ be the operator of multiplication by $g \in \mathbb{R}^X$. Show that M_g is linear.

Isomorphism of vector spaces

Let U, V be two vector spaces.

PRAC Fix a basis $B \subset U$.

- (*a) Let $f \in \text{Hom}(U, V)$ be a linear isomorphism. Show that the image $f(B) = \{f(\underline{v}) \mid \underline{v} \in B\}$ is a basis of *V*.
- RMK It follows that is U is isomorphic to V then $\dim U = \dim V$.
- (**b) Conversely, suppose that $B' \subset V$ is a basis, and and that $g: B \to B'$ is a function which is 1-1 and onto (see notations file). Show that there is an isomorphism $f \in \text{Hom}(U, V)$ which agrees with g on B.

RMK It follows that if $\dim U = \dim V$ then U is isomorphic to V.

PRAC Let $T \in \text{Hom}(U, V)$, $S \in \text{Hom}(V, U)$. Show that the following are equivalent

- (1) $ST = \mathrm{Id}_V, TS = \mathrm{Id}_U$
- (2) S is invertible with inverse T.
- 1. Suppose that dim $U = \dim V < \infty$. Let $A \in \operatorname{Hom}(U, V)$. Show that the following are equivalent: (1) *A* is invertible.
 - (2) A is surjective.
 - $(2) \quad A \quad \text{is initial}$
 - (3) A is injective.

Linear equations

2. (Recognition) Express the following equations as linear equations by finding appropriate spaces, linear map, and constant vector.

(a)
$$\begin{cases} 5x + 7y &= 3\\ z + 2x &= 1\\ 2y + x + 3z &= -1\\ x + y &= 0 \end{cases}$$

- (b) (Bessel equation) $x^2y'' + x\frac{dy}{dx} + (x^2 \alpha^2)y = 0$. Use the space $C^{\infty}(\mathbb{R})$ of functions on \mathbb{R} which can be differentiated to all orders.
- (*c) Fixing $S, B \in \text{Hom}(U, U)$ with S invertible, $SXS^{-1} = B$ for an unknown $X \in \text{Hom}(U, U)$. (Show that the map you define is linear)

PRAC Suppose that dim U = n. Using a basis for U, replace the equation of (c) with a system of n^2 equations in n^2 unknowns.

Let's learn induction using similarity of matrices.

Let U be a vector space. Write End(U) for Hom(U,U) (linear maps from U to itself).

DEFINITION. Let *U* be a vector space. We say that two transformations $A, B \in \text{End}(U)$ are *similar* if there is an invertible linear map $S \in \text{End}(U)$ such that $B = SAS^{-1}$.

- 3. (Calculations)
 - PRAC Suppose that A, B are similar and A = 0. Show that B = 0.
 - (a) Suppose that A, B are similar and $A = Id_U$. Show that $B = Id_U$.
 - (b) Show that the matrices $A = \begin{pmatrix} 0 & 2 \\ 6 & -4 \end{pmatrix}$, $B = \begin{pmatrix} -33 & 15 \\ -63 & 29 \end{pmatrix}$ are similar via the similarity transformation $S = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. (For a formula for S^{-1} see PS5)
- 4. (Similarity is an "equivalence relation")
 - (a) show that *A* is similar to *A* for all *A*. (Hint: choose *S* wisely)
 - (b) Suppose that A is similar to B. Show that B is similar to A (Hint: solve $B = SAS^{-1}$ for A).
 - (x) Suppose that A is similar to B, and B is similar to C. Show that A is similar to C.

For the rest of the problem set fix A, B, S such that $B = SAS^{-1}$. Define A^n as follows: $A^0 = Id_U$ and $A^{n+1} = A^n \cdot A$.

5. Induction 1

٠,

- (a) Show that $B^0 = SA^0S^{-1}$
- PRAC Show that $B^2 = SA^2S^{-1}$ and $B^3 = SA^3S^{-1}$.
- (b) Suppose that $B^n = SA^nS^{-1}$. Show that $B^{n+1} = SA^{n+1}S^{-1}$.

The principle of mathematical induction says that (a),(b) together show that $B^n = SA^nS^{-1}$ for all *n*.

PRAC (Induction 2) For a polynomials
$$p(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{R}[x]$$
 and $A \in \text{End}(U)$ define $p(A) = \sum_{i=0}^{n} a_i A^i$. We will prove that $p(B) = Sp(A)S^{-1}$.

- (a) Suppose that p is a constant polynomial. Show that $p(B) = Sp(A)S^{-1}$.
- (b) Suppose that the formula holds for polynomials of degree at most *n*. Show that the formula holds for polynomials of degree at most n + 1 (hint: if *p* has degree at most n + 1 you can write it as $p(x) = a_{n+1}x^{n+1} + q(x)$ where *q* has degree at most *n*).

RMK You will need to show that $S(aT)S^{-1} = aSTS^{-1}$ for any scalar *a*.