Math 223: Problem Set 6 (due 17/10/12)

Practice problems (recommended, but do not submit)

PRAC Let U, V, W, X be vector spaces.
(a) Let $A \in \operatorname{Hom}(U, V), B \in \operatorname{Hom}(W, X)$. We define maps $R_{A}: \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}(U, W)$, $L_{B}: \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}(V, X)$ and $S_{A, B}: \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}(U, X)$ by $R_{A}(T)=T A$, $L_{B}(T)=B T, S_{A, B}(T)=B T A$. Show that all three maps are linear.
(b) Suppose that $A, B \in \operatorname{Hom}(U, U)$ are invertible, with inverses A^{-1}, B^{-1}. Show that $A B$ is invertible, with inverse $B^{-1} A^{-1}$ (note the different order!)
(c) Let $A \in \operatorname{Hom}(U, V), B \in \operatorname{Hom}(V, W)$. Show that $\operatorname{Ker}(B A) \subset \operatorname{Ker} B$ and that $\operatorname{Im}(B A) \subset$ $\operatorname{Im}(B)$.
(d) Let $A \in \operatorname{Hom}(U, V), B \in \operatorname{Hom}(V, W)$. If $B A$ is injective then so is A. If $B A$ is surjective then so is B.
PRAC Let X be a set, and let $M_{g}: \mathbb{R}^{X} \rightarrow \mathbb{R}^{X}$ be the operator of multiplication by $g \in \mathbb{R}^{X}$. Show that M_{g} is linear.

Isomorphism of vector spaces

Let U, V be two vector spaces.
PRAC Fix a basis $B \subset U$.
(*a) Let $f \in \operatorname{Hom}(U, V)$ be a linear isomorphism. Show that the image $f(B)=\{f(\underline{v}) \mid \underline{v} \in B\}$ is a basis of V.
RMK It follows that is U is isomorphic to V then $\operatorname{dim} U=\operatorname{dim} V$.
(**b) Conversely, suppose that $B^{\prime} \subset V$ is a basis, and and that $g: B \rightarrow B^{\prime}$ is a function which is $1-1$ and onto (see notations file). Show that there is an isomorphism $f \in \operatorname{Hom}(U, V)$ which agrees with g on B.
RMK It follows that if $\operatorname{dim} U=\operatorname{dim} V$ then U is isomorphic to V.
PRAC Let $T \in \operatorname{Hom}(U, V), S \in \operatorname{Hom}(V, U)$. Show that the following are equivalent
(1) $S T=\mathrm{Id}_{V}, T S=\operatorname{Id}_{U}$
(2) S is invertible with inverse T.

1. Suppose that $\operatorname{dim} U=\operatorname{dim} V<\infty$. Let $A \in \operatorname{Hom}(U, V)$. Show that the following are equivalent:
(1) A is invertible.
(2) A is surjective.
(3) A is injective.

Linear equations

2. (Recognition) Express the following equations as linear equations by finding appropriate spaces, linear map, and constant vector.
(a)
$\left\{\begin{array}{ll}5 x+7 y & =3 \\ z+2 x & =1 \\ 2 y+x+3 z & =-1 \\ x+y & =0\end{array}\right.$.
(b) (Bessel equation) $x^{2} y^{\prime \prime}+x \frac{d y}{d x}+\left(x^{2}-\alpha^{2}\right) y=0$. Use the space $C^{\infty}(\mathbb{R})$ of functions on \mathbb{R} which can be differentiated to all orders.
$\left(*\right.$ c) Fixing $S, B \in \operatorname{Hom}(U, U)$ with S invertible, $S X S^{-1}=B$ for an unknown $X \in \operatorname{Hom}(U, U)$. (Show that the map you define is linear)

PRAC Suppose that $\operatorname{dim} U=n$. Using a basis for U, replace the equation of (c) with a system of n^{2} equations in n^{2} unknowns.

Let's learn induction using similarity of matrices.

Let U be a vector space. Write $\operatorname{End}(U)$ for $\operatorname{Hom}(U, U)$ (linear maps from U to itself).
Definition. Let U be a vector space. We say that two transformations $A, B \in \operatorname{End}(U)$ are similar if there is an invertible linear map $S \in \operatorname{End}(U)$ such that $B=S A S^{-1}$.
3. (Calculations)

PRAC Suppose that A, B are similar and $A=0$. Show that $B=0$.
(a) Suppose that A, B are similar and $A=\operatorname{Id}_{U}$. Show that $B=\operatorname{Id}_{U}$.
(b) Show that the matrices $A=\left(\begin{array}{cc}0 & 2 \\ 6 & -4\end{array}\right), B=\left(\begin{array}{cc}-33 & 15 \\ -63 & 29\end{array}\right)$ are similar via the similarity transformation $S=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. (For a formula for S^{-1} see PS5)
4. (Similarity is an "equivalence relation")
(a) show that A is similar to A for all A. (Hint: choose S wisely)
(b) Suppose that A is similar to B. Show that B is similar to A (Hint: solve $B=S A S^{-1}$ for A).
(x) Suppose that A is similar to B, and B is simlar to C. Show that A is similar to C.

For the rest of the problem set fix A, B, S such that $B=S A S^{-1}$. Define A^{n} as follows: $A^{0}=\operatorname{Id}_{U}$ and $A^{n+1}=A^{n} \cdot A$.
5. Induction 1
(a) Show that $B^{0}=S A^{0} S^{-1}$

PRAC Show that $B^{2}=S A^{2} S^{-1}$ and $B^{3}=S A^{3} S^{-1}$.
(b) Suppose that $B^{n}=S A^{n} S^{-1}$. Show that $B^{n+1}=S A^{n+1} S^{-1}$.

The principle of mathematical induction says that (a),(b) together show that $B^{n}=S A^{n} S^{-1}$ for all n.
PRAC (Induction 2) For a polynomials $p(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{R}[x]$ and $A \in \operatorname{End}(U)$ define $p(A)=$ $\sum_{i=0}^{n} a_{i} A^{i}$. We will prove that $p(B)=S p(A) S^{-1}$.
(a) Suppose that p is a constant polynomial. Show that $p(B)=\operatorname{Sp}(A) S^{-1}$.
(b) Suppose that the formula holds for polynomials of degree at most n. Show that the formula holds for polynomials of degree at most $n+1$ (hint: if p has degree at most $n+1$ you can write it as $p(x)=a_{n+1} x^{n+1}+q(x)$ where q has degree at most $\left.n\right)$.
RMK You will need to show that $S(a T) S^{-1}=a S T S^{-1}$ for any scalar a.

