Math 223: Problem Set 5 (due 10/10/12)

Practice problems (recommended, but do not submit) Calculations with matrices

1. Let
$$A = \begin{pmatrix} -2 & 3 \\ 5 & -7 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 1 & 0 \\ 0 & -2 & 9 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. Calculate

all possible products among pairs of A, B, C, D (don't forget that $A^2 = AA$ is also such a product and that XY, YX are different products if both make sense).

PRAC The $n \times n$ identity matrix is the matrix $I_n \in M_n(\mathbb{R})$ with entries: $(I_n)_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$. Show that $I_n v = v$ for all $v \in \mathbb{R}^n$.

2. Let $A \in M_{m,n}(\mathbb{R})$. Show that $AI_n = I_m A = A$. (Hint)

PRAC

- (a) Let $A \in M_{n,m}(\mathbb{R})$, $B \in M_{m,p}(\mathbb{R})$. Show that the *j*th column of *AB* is given by the product Av where v is the *j*th column of B.
- (b) Let $A \in M_{n,m}(\mathbb{R})$, $B \in M_{m,p}(\mathbb{R})$. Show that the *j*th column of *AB* is a linear combination of all the columns of A with the coefficients being the *j*th column of B.

3. Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$$
 and suppose that $ad - bc \neq 0$.
(a) Find a matrix $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ such that $AB = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Show that $BA = I_2$ as well.
(*b) ("Uniqueness of the inverse") Suppose that $AC = I_2$. Show that $C = B$.

*4. Find a matrix $N \in M_2(\mathbb{R})$ such that $N^2 = 0$ but $N \neq 0$.

- 5. ("Group homomorphisms")
 (a) Let R_α be the matrix \$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\cos \alpha & -\sin \\ \sin \alpha & -\sin \\ \sin \alpha & \cos \alpha \end{pmatrix}\$ \$\begin{pmatrix} (\sin \alpha & -\sin \\ \sin \alpha & -\sin \\ \sin \alpha & \cos \\ \sin \alpha & -\sin \\ \sin \\ \sin \\ \sin \alpha & -\sin \\ \sin \\ \sin \\ \sin y).

An application to graph theory

*6. Let V be a vector space. A linear map $T: V \to V$ is said to be *bipartite* if there are subspaces $W_1, W_2 \subset V$ such that $V = W_1 \oplus W_2$ (internal direct sum). and such that $T(W_1) \subset W_2$ and $T(W_2) \subset W_1$. Let T be bipartite with respect to the decomposition $V = W_1 \oplus W_2$. Show that $\dim \operatorname{Ker} T \geq |\dim W_1 - \dim W_2|.$

Hint for 2: interpret the compositions as linear maps, and use the practice problem. Hint for 3a: use the practice problem and a previous problem set.

Supplementary problems

- A. Show by hand that for any three matrices A, B, C with compatible dimensions, (AB)C = A(BC).
- B. (Every vector space is ℝⁿ) Let V be a vector space with basis B = {v_i}_{i∈I} (I may be infinite).
 (a) Let Φ: ℝ^{⊕I} → V be the map Φ(f) = Σ_{i∈I} f_{i⊻i} = Σ_{fi≠0} f_{i⊻i} [we admit infinite sums if only finitely many summands are non zero]. Show that Φ is a an isomorphism of vector spaces. RMK The inverse map Ψ: V → ℝ^{⊕I} is called the *coordinate map* (in the ordered basis B)
 - (b) Construct an isomorphism $V^* \to \mathbb{R}^I$.
 - (c) Let W be another space with basis $C = \{\underline{w}_j\}_{i \in I}$. Construct an injective linear map $\operatorname{Hom}(V,W) \to M_{I \times J}(\mathbb{R}) = \mathbb{R}^{I \times J}$ and show that its image is the set of matrices having at most finitely many non-zero entries in each column.