Math 223: Problem Set 5 (due 10/10/12)

Practice problems (recommended, but do not submit)

Calculations with matrices

1. Let $A=\left(\begin{array}{cc}-2 & 3 \\ 5 & -7\end{array}\right), B=\left(\begin{array}{ccc}4 & 1 & 0 \\ 0 & -2 & 9\end{array}\right), C=\left(\begin{array}{ll}0 & 0 \\ 1 & 1 \\ 2 & 2\end{array}\right), D=\left(\begin{array}{lll}7 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 5\end{array}\right)$. Calculate all possible products among pairs of A, B, C, D (don't forget that $A^{2}=A A$ is also such a product and that $X Y, Y X$ are different products if both make sense).

PRAC The $n \times n$ identity matrix is the matrix $I_{n} \in M_{n}(\mathbb{R})$ with entries: $\left(I_{n}\right)_{i j}=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$. Show that $I_{n} \underline{v}=\underline{v}$ for all $\underline{v} \in \mathbb{R}^{n}$.
2. Let $A \in M_{m, n}(\mathbb{R})$. Show that $A I_{n}=I_{m} A=A$. (Hint)

PRAC
(a) Let $A \in M_{n, m}(\mathbb{R}), B \in M_{m, p}(\mathbb{R})$. Show that the j th column of $A B$ is given by the product $A \underline{v}$ where \underline{v} is the j th column of B.
(b) Let $A \in M_{n, m}(\mathbb{R}), B \in M_{m, p}(\mathbb{R})$. Show that the j th column of $A B$ is a linear combination of all the columns of A with the coefficients being the j th column of B.
3. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R})$ and suppose that $a d-b c \neq 0$.
(a) Find a matrix $B=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ such that $A B=I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Show that $B A=I_{2}$ as well.
(*b) ("Uniqueness of the inverse") Suppose that $A C=I_{2}$. Show that $C=B$.
*4. Find a matrix $N \in M_{2}(\mathbb{R})$ such that $N^{2}=0$ but $N \neq 0$.
5. ("Group homomorphisms")
(a) Let R_{α} be the matrix $\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$ ("rotation in the plane by angle α "). Show that $R_{\alpha} R_{\beta}=R_{\alpha+\beta}$.
(b) Let $n(x)$ be the matrix $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ ("shear in the plane by x "). Show that $n(x) n(y)=n(x+$ $y)$.

An application to graph theory

*6. Let V be a vector space. A linear map $T: V \rightarrow V$ is said to be bipartite if there are subspaces $W_{1}, W_{2} \subset V$ such that $V=W_{1} \oplus W_{2}$ (internal direct sum). and such that $T\left(W_{1}\right) \subset W_{2}$ and $T\left(W_{2}\right) \subset W_{1}$. Let T be bipartite with respect to the decomposition $V=W_{1} \oplus W_{2}$. Show that $\operatorname{dim} \operatorname{Ker} T \geq\left|\operatorname{dim} W_{1}-\operatorname{dim} W_{2}\right|$.

Hint for 2: interpret the compositions as linear maps, and use the practice problem.
Hint for 3a: use the practice problem and a previous problem set.

Supplementary problems

A. Show by hand that for any three matrices A, B, C with compatible dimensions, $(A B) C=A(B C)$.
B. (Every vector space is \mathbb{R}^{n}) Let V be a vector space with basis $B=\left\{\underline{v}_{i}\right\}_{i \in I}$ (I may be infinite).
(a) Let $\Phi: \mathbb{R}^{\oplus I} \rightarrow V$ be the map $\Phi(f)=\sum_{i \in I} f_{i} \underline{v}_{i}=\sum_{f_{i} \neq 0} f_{i} \underline{v}_{i}$ [we admit infinite sums if only finitely many summands are non zero]. Show that Φ is a an isomorphism of vector spaces.
RMK The inverse map $\Psi: V \rightarrow \mathbb{R}^{\oplus I}$ is called the coordinate map (in the ordered basis B)
(b) Construct an isomorphism $V^{*} \rightarrow \mathbb{R}^{I}$.
(c) Let W be another space with basis $C=\left\{\underline{w}_{j}\right\}_{j \in J}$. Construct an injective linear map $\operatorname{Hom}(V, W) \rightarrow M_{I \times J}(\mathbb{R})=\mathbb{R}^{I \times J}$ and show that its image is the set of matrices having at most finitely many non-zero entries in each column.

