Math 223: Problem Set 4 (due 3/10/12)

Practice problems (recommended, but do not submit)

Section 2.1, Problems 1-3,5,9,10-12,28-29 Section 2.2, Problems 1-3.

Calculations with linear maps

1. Let $T: U \to V$ be a linear map, and let $S \subset U$ be a generating set. Show that $\{Ts \mid s \in S\}$ is a generating set for Im T.

RMK This is a starting point for finding a basis for Im T.

2. Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be the linear map $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 2x_1 \end{pmatrix}$.

- (a) Find bases for Ker T, Im T and check that the dimension formula holds.
- (b) Find the matrix for *T* with respect to the bases $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ of \mathbb{R}^2 and $\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ of \mathbb{R}^3 .

3. Let
$$T : \mathbb{R}^5 \to \mathbb{R}^3$$
 be the linear map $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 \\ x_1 - x_2 + x_3 - x_5 \\ -3x_1 - x_3 + x_5 \end{pmatrix}$.

- (a) Find bases for Ker T, Im T (use problem 1) and check that the dimension formula holds.
- (b) Find the matrix for T with respect to the standard bases of \mathbb{R}^5 , \mathbb{R}^3 .

(c) Find the matrix for *T* with respect to the standard basis of \mathbb{R}^5 and the basis $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$

of \mathbb{R}^3 .

- 4. Let $D: \mathbb{R}[x]^{\leq n} \to \mathbb{R}[x]^{\leq n}$ be the differentiation map.
 - (a) Find Ker*D* and its dimension.
 - (b) Find ImD.

Fix a number $a \neq 0$ and let $T: \mathbb{R}[x]^{\leq n} \to \mathbb{R}[x]^{\leq n}$ be the map $D + Z_a$ (that is, $Tp = \frac{dp}{dx} + \frac{dp}{dx}$) $a \cdot p$).

- (c) Show that T maps the basis of monomials to a set of n+1 polynomials of distinct degrees.
- (*d) Show that $\operatorname{Im} T = \mathbb{R}[x]^{\leq n}$.

Linear dependence of functions

- 5. Let X be a set, and let $\{f_i\}_{i=1}^n \subset \mathbb{R}^X$ be some *n* functions. Let $\{x_j\}_{j=1}^m \subset X$ be *m* points of X. (a) Define a map $E \colon \mathbb{R}^n \to \mathbb{R}^m$ by setting $(E\underline{a})_j = \sum_{i=1}^n a_i f_i(x_j)$ for $\underline{a} \in \mathbb{R}^n$ and $1 \le j \le m$. Show that *E* is linear.
 - (b) Suppose that m < n. Show that dim KerE > 0. Conclude that if m < n there exist $\{a_i\}_{i=1}^n$ not all zero such that the function $\sum_{i=1}^{n} a_i f_i$ vanishes at all the points $\{x_j\}_{j=1}^{m}$.

Surjective and injective maps; Invertibility

DEFINITION. Let $T: U \to V$ be a linear map. We say that T is *injective* (a *monomorphism*) if $T\underline{u} = T\underline{u}'$ implies $\underline{u} = \underline{u}'$ and *surjective* (an *epimorphism*) if Im T = V.

6. Show that T is injective if and only if $\text{Ker} T = \{\underline{0}\}$. (Hint: to compare two vectors consider their difference)

DEFINITION. If a linear map $T: U \rightarrow V$ is surjective and injective we say it is an *isomorphism* (of vector spaces). We say that U, V are isomorphic if there is an isomorphism between them.

- 7. Suppose that $T: U \to V$ is an isomorphism of vector spaces, and define a function $T^{-1}: V \to U$ by $T^{-1}\underline{v}$ being that vector \underline{u} such that $T\underline{u} = \underline{v}$.
 - (a) Explain why \underline{u} exists and why it is unique (that is, review the definitions of surjective and injective)
 - (*b) Show that T^{-1} is a linear function.

Supplementary problems

- A. Let *V* be a vector space and let $W_1, W_2 \subset V$ be finite-dimensional subspaces.
 - (a) Show that $\dim(W_1 + W_2) \leq \dim W_1 + \dim W_2$.
 - (**b) Show that $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim W_1 + \dim W_2$.
 - RMK Let *A*, *B* be finite sets. Then the "inclusion-exclusion" formula states $#A + #B = #(A \cup B) + #(A \cap B)$
- B. Let V be a vector space, W a subspace. Let $B \subset W$ be a basis for W and let $C \subset V$ be such that $B \cup C$ is a basis for V (that is, we extend B until we get a basis for V).
 - (a) Show that $\{\underline{v}+W\}_{\underline{v}\in C}$ is a basis for the quotient vector space V/W (see supplement to PS2).
 - (b) Conclude that $\dim V = \dim V/W + \dim W$.
 - (c) Show that the map $v \mapsto v + W$ gives a surjective linear map $V \to V/W$ with kernel W.