Math 223: Problem Set 4 (due 3/10/12)

Practice problems (recommended, but do not submit)

Section 2.1, Problems 1-3,5,9,10-12,28-29
Section 2.2, Problems 1-3.

Calculations with linear maps

1. Let $T: U \rightarrow V$ be a linear map, and let $S \subset U$ be a generating set. Show that $\{T \underline{s} \mid \underline{s} \in S\}$ is a generating set for $\operatorname{Im} T$.
RMK This is a starting point for finding a basis for $\operatorname{Im} T$.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear map $T\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}x_{1}+x_{2} \\ x_{1}-x_{2} \\ 2 x_{1}\end{array}\right)$.
(a) Find bases for $\operatorname{Ker} T, \operatorname{Im} T$ and check that the dimension formula holds.
(b) Find the matrix for T with respect to the bases $\left\{\binom{1}{1},\binom{1}{-1}\right\}$ of \mathbb{R}^{2} and $\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right.$ of \mathbb{R}^{3}.
3. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be the linear map $T\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{c}2 x_{1}+x_{2} \\ x_{1}-x_{2}+x_{3}-x_{5} \\ -3 x_{1}-x_{3}+x_{5}\end{array}\right)$.
(a) Find bases for $\operatorname{Ker} T, \operatorname{Im} T$ (use problem 1) and check that the dimension formula holds.
(b) Find the matrix for T with respect to the standard bases of $\mathbb{R}^{5}, \mathbb{R}^{3}$.
(c) Find the matrix for T with respect to the standard basis of \mathbb{R}^{5} and the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$ of \mathbb{R}^{3}.
4. Let $D: \mathbb{R}[x]^{\leq n} \rightarrow \mathbb{R}[x]^{\leq n}$ be the differentiation map.
(a) Find $\operatorname{Ker} D$ and its dimension.
(b) Find $\operatorname{Im} D$.

Fix a number $a \neq 0$ and let $T: \mathbb{R}[x]^{\leq n} \rightarrow \mathbb{R}[x]^{\leq n}$ be the map $D+Z_{a}$ (that is, $T p=\frac{d p}{d x}+$ $a \cdot p)$.
(c) Show that T maps the basis of monomials to a set of $n+1$ polynomials of distinct degrees. (*d) Show that $\operatorname{Im} T=\mathbb{R}[x]^{\leq n}$.

Linear dependence of functions

5. Let X be a set, and let $\left\{f_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{X}$ be some n functions. Let $\left\{x_{j}\right\}_{j=1}^{m} \subset X$ be m points of X.
(a) Define a map $E: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by setting $(E \underline{a})_{j}=\sum_{i=1}^{n} a_{i} f_{i}\left(x_{j}\right)$ for $\underline{a} \in \mathbb{R}^{n}$ and $1 \leq j \leq m$. Show that E is linear.
(b) Suppose that $m<n$. Show that $\operatorname{dim} \operatorname{Ker} E>0$. Conclude that if $m<n$ there exist $\left\{a_{i}\right\}_{i=1}^{n}$ not all zero such that the function $\sum_{i=1}^{n} a_{i} f_{i}$ vanishes at all the points $\left\{x_{j}\right\}_{j=1}^{m}$.

Surjective and injective maps; Invertibility

Definition. Let $T: U \rightarrow V$ be a linear map. We say that T is injective (a monomorphism) if $T \underline{u}=T \underline{u}^{\prime}$ implies $\underline{u}=\underline{u}^{\prime}$ and surjective (an epimorphism) if $\operatorname{Im} T=V$.
6. Show that T is injective if and only if $\operatorname{Ker} T=\{\underline{0}\}$. (Hint: to compare two vectors consider their difference)

DEFINITION. If a linear map $T: U \rightarrow V$ is surjective and injective we say it is an isomoprhism (of vector spaces). We say that U, V are isomorphic if there is an isomorphism between them.
7. Suppose that $T: U \rightarrow V$ is an isomorphism of vector spaces, and define a function $T^{-1}: V \rightarrow U$ by $T^{-1} \underline{v}$ being that vector \underline{u} such that $T \underline{u}=\underline{v}$.
(a) Explain why \underline{u} exists and why it is unique (that is, review the definitions of surjective and injective)
(*b) Show that T^{-1} is a linear function.

Supplementary problems

A. Let V be a vector space and let $W_{1}, W_{2} \subset V$ be finite-dimensional subspaces.
(a) Show that $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq \operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.
(**b) Show that $\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.
RMK Let A, B be finite sets. Then the "inclusion-exclusion" formula states $\# A+\# B=\#(A \cup$ $B)+\#(A \cap B)$
B. Let V be a vector space, W a subspace. Let $B \subset W$ be a basis for W and let $C \subset V$ be such that $B \cup C$ is a basis for V (that is, we extend B until we get a basis for V).
(a) Show that $\{\underline{v}+W\}_{\underline{v} \in C}$ is a basis for the quotient vector space V / W (see supplement to PS2).
(b) Conclude that $\operatorname{dim} V=\operatorname{dim} V / W+\operatorname{dim} W$.
(c) Show that the map $v \mapsto v+W$ gives a surjective linear map $V \rightarrow V / W$ with kernel W.

