Math 223: Problem Set 3 (due 26/9/12)

Practice problems (recommended, but do not submit)

Section 1.6, Problems 1 (except (g)), 2-5, 7, 11, 12, 22*, 24*.

Bases and dimension

- 1. (§1.6 E8)Let $W = \{ \underline{x} \in \mathbb{R}^5 \mid \sum_{i=1}^5 x_i = 0 \}$ be the set of vectors in \mathbb{R}^5 whose co-ordinates sum to zero. The following 8 vectors span *W*. Find a subset of them which forms a basis for *W*. $\underline{u}_1 = (2, -3, 4, -5, 2), \underline{u}_2 = (-6, 9, -12, 15, -6), \underline{u}_3 = (3, -2, 7, -9, 1), \underline{u}_4 = (2, -8, 2, -2, 6),$ $\underline{u}_{5} = (-1, 1, 2, 1, -3), \underline{u}_{6} = (0, -3, -18, 9, 12), \underline{u}_{7} = (1, 0, -2, 3, -2), \underline{u}_{8} = (2, -1, 1, -9, 7).$
- 2. Find a basis for the subspace $\{x \in \mathbb{R}^4 \mid x_1 + 3x_2 x_3 = 0\}$ of \mathbb{R}^4 . What is the dimension?
- 3. For $n \ge 0$ let $E = \{p \in \mathbb{R}[x] \mid \deg(p) \le n, p(-x) = p(x)\}$ be the set of even polynomials of degree at most *n*. This is a subspace of $\mathbb{R}[x]$ (we will show that later). Find a basis for it.

Linear Functionals

Fix a vector space V. A *linear functional* on V is a map $\varphi \colon V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $\underline{u}, \underline{v} \in V$, $\varphi(a\underline{v} + b\underline{u}) = a\varphi(\underline{v}) + b\varphi(\underline{u})$. Let $V^* \stackrel{\text{def}}{=} \{\varphi \in \mathbb{R}^V \mid \varphi \text{ is a linear functional}\}$ be the set of linear functionals on *V*. The space V^* is called the *dual vector space* of *V*.

4. (The basic example)

(a) Show that
$$\varphi\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = x - 2y + 3z$$
 defines a linear functional on \mathbb{R}^3 .

(b) Let φ be a linear functional on \mathbb{R}^2 . Show that $\varphi\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = x \cdot \varphi\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) + y \cdot \varphi\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$ and conclude that every linear functional on \mathbb{R}^2 is of the form $\varphi\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = ax + by$ for

some $a, b \in \mathbb{R}$.

SUPP Construct an identification of $(\mathbb{R}^n)^*$ with \mathbb{R}^n .

SUPP Show that V^* is a subspace of \mathbb{R}^V , hence a vector space.

- 6. Let *V* be a vector space and let $\varphi \in V^*$ be non-zero.
 - (a) Show that Ker $\varphi \stackrel{\text{def}}{=} \{ \underline{v} \in V \mid \varphi(\underline{v}) = 0 \}$ is a subspace.
 - (*b) Show that there is $v \in V$ satisfying $\varphi(v) = 1$.
 - (**c) Let *B* be a basis of Ker φ , and let $\underline{v} \in V$ be as in part (b). Show that $B \cup \{\underline{v}\}$ is a basis of V.
 - RMK If V is finite-dimensional this shows: dim $V = \dim \operatorname{Ker} \varphi + 1$. In general we say that Ker φ is of *codimension* 1.

A Linear Transformation

In this problem our choice of letters to denote numbers follows conventions from physics. Thus v will be a numerical parameter rather than a vector, and we write the coordinates of a vector in \mathbb{R}^2 as $\begin{pmatrix} x \\ t \end{pmatrix}$ rather than $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

7. In the course of his researches on electromagnetism, Hendrik Lorentz wrote down the following map $L_{\nu}: \mathbb{R}^2 \to \mathbb{R}^2$:

$$L_{v}\left(\begin{array}{c}x\\t\end{array}\right)\stackrel{\text{def}}{=}\gamma_{v}\cdot\left(\begin{array}{c}x-vt\\t-vx\end{array}\right).$$

Here *v* is a parameter such that |v| < 1 and γ_v is also a scalar, defined by $\gamma_v = (1 - v^2)^{-1/2}$.

- (a) Suppose v = 0.6 so that $\gamma_v = (1 0.6^2)^{-1/2} = 1.25$. Calculate $L_v \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $L_v \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $L_v \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Check that $L_v \begin{pmatrix} 2 \\ 3 \end{pmatrix} = L_v \begin{pmatrix} 3 \\ 2 \end{pmatrix} + L_v \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.
- (b) Show that L_{ν} is a linear transformation.
- (c) ("Group property") Let $v, v' \in (-1, 1)$ be two parameters. Show that $L_v \circ L_{v'} = L_u$ for $u = \frac{v+v'}{1+vv'}$. It is a fact that if $v, v' \in (-1, 1)$ then $\frac{v+v'}{1+vv'} \in (-1, 1)$ as well. *Hint*: Start by showing $\gamma_v \gamma_{v'} = \frac{\gamma_u}{1+vy'}$.
- RMK If $g: A \to B$ and $f: B \to C$ are functions then $f \circ g$ denotes their *composition*, the function $f \circ g: A \to C$ such that $(f \circ g)(a) = f(g(a))$ for all $a \in A$.

Supplementary problems

- A. Let V be a vector space and let $W_1, W_2 \subset V$ be finite-dimensional subspaces. (a) Show that $\dim(W_1 + W_2) \leq \dim W_1 + \dim W_2$.
 - (**b) Show that $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim W_1 + \dim W_2$.
 - RMK Let *A*, *B* be finite sets. Then the "inclusion-exclusion" formula states $#A + #B = #(A \cup B) + #(A \cap B)$
- B. Let V be a vector space, W a subspace. Let $B \subset W$ be a basis for W and let $C \subset V$ be disjoint from B and such that $B \cup C$ is a basis for V (that is, we extend B until we get a basis for V).
 - (a) Show that $\{\underline{v} + W\}_{\underline{v} \in C}$ is a basis for the quotient vector space V/W (V/W is defined in the supplement to PS2).
 - (b) Show that $\dim W + \dim(V/W) = \dim V$.