Math 223: Problem Set 3 (due 26/9/12)
Practice problems (recommended, but do not submit)
Section 1.6, Problems 1 (except (g)), 2-5, 7, 11,12, 22*, 24*.

Bases and dimension

1. (§1.6 E8)Let $W=\left\{\underline{x} \in \mathbb{R}^{5} \mid \sum_{i=1}^{5} x_{i}=0\right\}$ be the set of vectors in \mathbb{R}^{5} whose co-ordinates sum to zero. The following 8 vectors span W. Find a subset of them which forms a basis for W. $\underline{u}_{1}=(2,-3,4,-5,2), \underline{u}_{2}=(-6,9,-12,15,-6), \underline{u}_{3}=(3,-2,7,-9,1), \underline{u}_{4}=(2,-8,2,-2,6)$, $\underline{u}_{5}=(-1,1,2,1,-3), \underline{u}_{6}=(0,-3,-18,9,12), \underline{u}_{7}=(1,0,-2,3,-2), \underline{u}_{8}=(2,-1,1,-9,7)$.
2. Find a basis for the subspace $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}+3 x_{2}-x_{3}=0\right\}$ of \mathbb{R}^{4}. What is the dimension?
3. For $n \geq 0$ let $E=\{p \in \mathbb{R}[x] \mid \operatorname{deg}(p) \leq n, p(-x)=p(x)\}$ be the set of even polynomials of degree at most n. This is a subspace of $\mathbb{R}[x]$ (we will show that later). Find a basis for it.

Linear Functionals

Fix a vector space V. A linear functional on V is a map $\varphi: V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $\underline{u}, \underline{v} \in V, \varphi(a \underline{v}+b \underline{u})=a \varphi(\underline{v})+b \varphi(\underline{u})$. Let $V^{*} \stackrel{\text { def }}{=}\left\{\varphi \in \mathbb{R}^{V} \mid \varphi\right.$ is a linear functional $\}$ be the set of linear functionals on V. The space V^{*} is called the dual vector space of V.
4. (The basic example)
(a) Show that $\varphi\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=x-2 y+3 z$ defines a linear functional on \mathbb{R}^{3}.
(b) Let φ be a linear functional on \mathbb{R}^{2}. Show that $\varphi\left(\binom{x}{y}\right)=x \cdot \varphi\left(\binom{1}{0}\right)+y \cdot \varphi\left(\binom{0}{1}\right)$ and conclude that every linear functional on \mathbb{R}^{2} is of the form $\varphi\left(\binom{x}{y}\right)=a x+b y$ for some $a, b \in \mathbb{R}$.
SUPP Construct an identification of $\left(\mathbb{R}^{n}\right)^{*}$ with \mathbb{R}^{n}.
SUPP Show that V^{*} is a subspace of \mathbb{R}^{V}, hence a vector space.
6. Let V be a vector space and let $\varphi \in V^{*}$ be non-zero.
(a) Show that $\operatorname{Ker} \varphi \stackrel{\text { def }}{=}\{\underline{v} \in V \mid \varphi(\underline{v})=0\}$ is a subspace.
(*b) Show that there is $\underline{v} \in V$ satisfying $\varphi(\underline{v})=1$.
$(* * \mathrm{c})$ Let B be a basis of $\operatorname{Ker} \varphi$, and let $\underline{v} \in V$ be as in part (b). Show that $B \cup\{\underline{v}\}$ is a basis of V.

RMK If V is finite-dimensional this shows: $\operatorname{dim} V=\operatorname{dim} \operatorname{Ker} \varphi+1$. In general we say that $\operatorname{Ker} \varphi$ is of codimension 1.

A Linear Transformation

In this problem our choice of letters to denote numbers follows conventions from physics. Thus v will be a numerical parameter rather than a vector, and we write the coordinates of a vector in \mathbb{R}^{2} as $\binom{x}{t}$ rather than $\binom{x_{1}}{x_{2}}$.
7. In the course of his researches on electromagnetism, Hendrik Lorentz wrote down the following map $L_{v}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
L_{v}\binom{x}{t} \stackrel{\text { def }}{=} \gamma_{v} \cdot\binom{x-v t}{t-v x} .
$$

Here v is a parameter such that $|v|<1$ and γ_{v} is also a scalar, defined by $\gamma_{v}=\left(1-v^{2}\right)^{-1 / 2}$.
(a) Suppose $v=0.6$ so that $\gamma_{v}=\left(1-0.6^{2}\right)^{-1 / 2}=1.25$. Calculate $L_{v}\binom{3}{2}, L_{v}\binom{-1}{1}$ and $L_{v}\binom{2}{3}$. Check that $L_{v}\binom{2}{3}=L_{v}\binom{3}{2}+L_{v}\binom{-1}{1}$.
(b) Show that L_{v} is a linear transformation.
(c) ("Group property") Let $v, v^{\prime} \in(-1,1)$ be two parameters. Show that $L_{v} \circ L_{v^{\prime}}=L_{u}$ for $u=\frac{v+v^{\prime}}{1+v v^{\prime}}$. It is a fact that if $v, v^{\prime} \in(-1,1)$ then $\frac{v+v^{\prime}}{1+v v^{\prime}} \in(-1,1)$ as well.
Hint: Start by showing $\gamma_{v} \gamma_{v^{\prime}}=\frac{\gamma_{u}}{1+v v^{\prime}}$.
RMK If $g: A \rightarrow B$ and $f: B \rightarrow C$ are functions then $f \circ g$ denotes their composition, the function $f \circ g: A \rightarrow C$ such that $(f \circ g)(a)=f(g(a))$ for all $a \in A$.

Supplementary problems

A. Let V be a vector space and let $W_{1}, W_{2} \subset V$ be finite-dimensional subspaces.
(a) Show that $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq \operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.
(**b) Show that $\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.
RMK Let A, B be finite sets. Then the "inclusion-exclusion" formula states $\# A+\# B=\#(A \cup$ $B)+\#(A \cap B)$
B. Let V be a vector space, W a subspace. Let $B \subset W$ be a basis for W and let $C \subset V$ be disjoint from B and such that $B \cup C$ is a basis for V (that is, we extend B until we get a basis for V).
(a) Show that $\{\underline{v}+W\}_{\underline{v} \in C}$ is a basis for the quotient vector space $V / W(V / W$ is defined in the supplement to PS2).
(b) Show that $\operatorname{dim} W+\operatorname{dim}(V / W)=\operatorname{dim} V$.

