## MATHEMATICAL NOTATIONS

## 1. Logical Remarks

"or" means inclusive or: the statement " $0=0$ or $1=1$ " is a true statement. $\forall x$ means "for all $x$ ", $\exists x$ means "there exists $x$ "

## 2. Set theory

$\in$ denotes set membership (negation $\notin$ ): $1 \in\{1,2,3\}$ but $0 \notin\{1,2,3\}$. The empty set is denoted $\emptyset$.

For a property $\phi(x)$ of elements of a set $A$ we write $\{x \in A \mid \phi(x)\}$ for the subset of $A$ consisting of those elements satisfying $\phi$ (example: $\{x \in \mathbb{R} \mid x>0\}$ is the set of positive reals).

Write $B \subset A$ or $B \subseteq A$ for set containment, the assertion that $x \in B \Rightarrow x \in A$ (example; $\{0\} \subset\{0,1\} \subset\{0,1,2\}$ but $\{2,3\} \not \subset\{0,1,2\}$.

Write $\mathcal{P}(A)$ for the powerset $\{B \mid B \subset A\}$. Example:

$$
\mathcal{P}(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}
$$

### 2.1. Operations on sets. Fix sets $A, B$. Write:

- $A \cup B$ for the union $\{x \mid x \in A$ or $x \in B\}$ [the elements appearing in at least one of the sets] (example: $\{0,1\} \cup\{1,2\}=\{0,1,2\}$ )
- $A \cap B$ for the intersection $\{x \in A \mid x \in B\}=\{x \in B \mid x \in A\}=\{x \mid x \in A$ and $x \in B\}$ [the elements appearing in both of the sets] (example: $\{0,1\} \cap\{1,2\}=\{1\}$
- $A \times B$ for the Cartesian product $\{(a, b) \mid a \in A, b \in B\}$ [the set of pairs of elements].
- $A \backslash B$ for the difference $\{x \in A \mid x \notin B\}$ [the elements appearing in $A$ but not $B], A \Delta B$ for the symmetric difference $(A \backslash B) \cup(B \backslash A)$ [the elements appearing in exactly one of the sets] (example: $\{0,1\} \backslash\{1,2\}=\{0\}$, $\{0,1\} \Delta\{1,2\}=\{0,2\}$ ).
2.2. Functions. Given sets $A, B$ we write $f: A \rightarrow B$ to mean that $f$ is a function with domain $A$ (i.e. defined for all $a \in A$ ) and so that $f(a) \in B$ for all $a \in A$. We sometime instead write this function by listing its values like so, writing $f_{a}$ instead of $f(a)$ :

$$
\left\{f_{a}\right\}_{a \in A} .
$$

## Don't confuse this notation with the set notation.

For a set $A$ write $\operatorname{id}_{A}$ for the identity function on $A$. That's the function $\operatorname{id}_{A}: A \rightarrow A$ such that $\operatorname{id}_{A}(a)=a$ for all $a$.

Note that functions are equal if the have the same domain, and if their values agree at every element of the domain.

- Given functions $f: A \rightarrow B$ and $g: B \rightarrow C$ we define their composition $g \circ f: A \rightarrow C$ to be the function $(g \circ f)(a)=g(f(a))$.
- Call a function $f: A \rightarrow B$ injective (or $1-1$ ) if $a \neq a^{\prime}$ implies $f(a) \neq f\left(a^{\prime}\right)$.
- Call a function (or onto) if for every $b \in B$ there is $a \in A$ so that $f(a)=b$.
- Call a fucntion $f: A \rightarrow B$ bijective if it is injective and surjective.

Exercise. $f$ is bijective iff there is $g: B \rightarrow A$ so that $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$.
2.3. "Family" set operations [will generally not appear in the course]. Fix a family $\left\{A_{i}\right\}_{i \in I}$ of sets (see function notation above) we write

- $\bigcup_{i \in I} A_{i}$ for the union $\left\{x \mid \exists i \in I: x \in A_{i}\right\}$
- $\bigcap_{i \in I} A_{i}$ for the intersection $\left\{x \mid \forall i \in I: x \in A_{i}\right\}$
- $\prod_{i \in I} A_{i}$ for the Cartesian product $\left\{f: I \rightarrow \bigcup_{i \in I} A_{i} \mid \forall i \in I: f(i) \in A_{i}\right\}$.


## 3. Linear algebra

3.1. Summation notation. Let $V$ be a vector space, $\left\{v_{i}\right\}_{i=1}^{N}$ a sequence of elements of $V$. We set inductively: $\sum_{i=1}^{0} \underline{v}_{i}=\underline{0}$ (the empty sum is by definition zero) after that $\sum_{i=1}^{n+1} \underline{v}_{i} \stackrel{\text { def }}{=}\left(\sum_{i=1}^{n} \underline{v}_{i}\right)+\underline{v}_{n+1}$. In other words:

$$
\sum_{i=1}^{0} \underline{v}_{i}=\underline{0}, \quad \sum_{i=1}^{1} \underline{v}_{i}=\underline{v}_{1}, \quad \sum_{i=1}^{2} \underline{v}_{i}=\underline{v}_{1}+\underline{v}_{2}, \quad \sum_{i=1}^{3} \underline{v}_{i}=\left(\underline{v}_{1}+\underline{v}_{2}\right)+\underline{v}_{3}, \ldots
$$

- Note that the value of the empty sum depends on the vector space under consideration!

