1. LINEAR DEPENDENCE

A – Definition of linear independence.

- <u>v</u> depends on S if there are {s_i}ⁿ_{i=1} ⊂ S and {a_i}ⁿ_{i=1} ⊂ ℝ such that <u>v</u> = ∑ⁿ_{i=1} a_i<u>s</u>_i.
 <u>v</u> depends on S if there are {s_i}ⁿ_{i=1} ⊂ S and {a_i}ⁿ_{i=1} ⊂ ℝ not all zero such that <u>v</u> = ∑ⁿ_{i=1} a_i<u>s</u>_i.
 If <u>v</u> depends on S then there are {s_i}ⁿ_{i=1} ⊂ S and {a_i}ⁿ_{i=1} ⊂ ℝ such that <u>v</u> = ∑ⁿ_{i=1} a_i<u>s</u>_i.

B – Linear dependence of the zero vector. The problem is to decide if $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ depends on $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\}$ in \mathbb{R}^2 .

$$a\begin{pmatrix} 1\\0 \end{pmatrix} + b\begin{pmatrix} 2\\0 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$
$$a + 2b = 0$$
$$a = -2b$$
$$b = 0$$
$$a = 0$$
$$dependent$$

Suppose that there were a, b such that	Dependence would follow from the existence of a, b
$a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	such that $a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Then $a + 2b = 0$	This is equivalent to $\begin{pmatrix} a+2b\\0 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$,
	hence to $a + 2b = 0$
Thus $a = -2b$.	And hence equivalent to the existence of a, b such
	that $a = -2b$.
Thus if there were a, b and $b = 0$ then	Choosing $b = 0, a = 0$ this equality holds so such a, b
a = 0 also.	do exist.

2. Linear maps on \mathbb{R}^n

A – Linearity in a concrete example.

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear map, and suppose that $T\begin{pmatrix} 3\\1 \end{pmatrix} = \underline{u}$ and $T\begin{pmatrix} 5\\4 \end{pmatrix} = \underline{v}$. Find an explicit vector $\underline{x} \in \mathbb{R}^2$ such that $T\underline{x} = 2\underline{u} - 3\underline{v}$.

•
$$T\underline{x} = 2\underline{u} - 3\underline{v} = 2T\begin{pmatrix} 3\\1 \end{pmatrix} - 3T\begin{pmatrix} 5\\4 \end{pmatrix} = T\left(2\begin{pmatrix} 3\\1 \end{pmatrix} - 3\begin{pmatrix} 5\\4 \end{pmatrix}\right) = T\begin{pmatrix} -9\\10 \end{pmatrix}$$
. Therefore $\underline{x} = \begin{pmatrix} -9\\10 \end{pmatrix}$.
• $2\underline{u} - 3\underline{v} = 2T\begin{pmatrix} 3\\1 \end{pmatrix} - 3T\begin{pmatrix} 5\\4 \end{pmatrix} = T\left(2\begin{pmatrix} 3\\1 \end{pmatrix} - 3\begin{pmatrix} 5\\4 \end{pmatrix}\right) = T\begin{pmatrix} -9\\-10 \end{pmatrix}$ so $T\begin{pmatrix} -9\\-10 \end{pmatrix} = 2\underline{u} - 3\underline{v}$.

- B Linearity of a linear functional. OK
- C Definition of Kernel. OK

D - Basis.

• Suppse
$$\underline{v} \in \operatorname{Ker} \varphi$$
 and that $\underline{v} = a \begin{pmatrix} 5\\2\\0 \end{pmatrix} + b \begin{pmatrix} 3\\0\\-2 \end{pmatrix} = \begin{pmatrix} 5a+3b\\2a\\-2b \end{pmatrix}$. Then $\varphi \underline{v} = 2(5a+3b) - 5(2a) + 3(-2b) = 0$. Thus any vector $\underline{v} \in \operatorname{Ker} \varphi$ can be written as a linear combination of $\begin{pmatrix} 5\\2\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\-2 \end{pmatrix}$ so they span $\operatorname{Ker} \varphi$.

3. Linear maps on $\mathbb{R}^{\mathbb{R}}$

For $(T_a f)(x) = f(x+a)$, $W = \text{Span} \{ e^{rx} \mid r \in \mathbb{R} \}$. B – Image of a linear map. Show that $T_a W = W$.

• $T_a(e_r) = e_r(a)e_r \in W$ so $T_aW = W$.