1. Linear dependence

A - Definition of linear independence.

- \underline{v} depends on S if there are $\left\{\underline{s}_{i}\right\}_{i=1}^{n} \subset S$ and $\left\{a_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ such that $\underline{v}=\sum_{i=1}^{n} a_{i} \underline{s}_{i}$.
- \underline{v} depends on S if there are $\left\{\underline{s}_{i}\right\}_{i=1}^{n=1} \subset S$ and $\left\{a_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ not all zero such that $\underline{v}=\sum_{i=1}^{n} a_{i} \underline{s}_{i}$.
- If \underline{v} depends on S then there are $\left\{\underline{s}_{i}\right\}_{i=1}^{n} \subset S$ and $\left\{a_{i}\right\}_{i=1}^{n} \subset \mathbb{R}$ such that $\underline{v}=\sum_{i=1}^{n} a_{i} \underline{s}_{i}$.

B - Linear dependence of the zero vector. The problem is to decide if $\binom{0}{0}$ depends on $\left\{\binom{1}{0},\binom{2}{0}\right\}$ in \mathbb{R}^{2}.

\[

\]

Suppose that there were a, b such that $a\binom{1}{0}+b\binom{2}{0}=\binom{0}{0}$	Dependence would follow from the existence of a, b such that $a\binom{1}{0}+b\binom{2}{0}=\binom{0}{0}$
Then $a+2 b=0$	This is equivalent to $\binom{a+2 b}{0}=\binom{0}{0}$, hence to $a+2 b=0$
Thus $a=-2 b$.	And hence equivalent to the existence of a, b such that $a=-2 b$.
Thus if there were a, b and $b=0$ then $a=0$ also.	Choosing $b=0, a=0$ this equality holds so such a, b do exist.

2. Linear maps on \mathbb{R}^{n}

A - Linearity in a concrete example.
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map, and suppose that $T\binom{3}{1}=\underline{u}$ and $T\binom{5}{4}=\underline{v}$. Find an explicit vector $\underline{x} \in \mathbb{R}^{2}$ such that $T \underline{x}=2 \underline{u}-3 \underline{v}$.

- $T \underline{x}=2 \underline{u}-3 \underline{v}=2 T\binom{3}{1}-3 T\binom{5}{4}=T\left(2\binom{3}{1}-3\binom{5}{4}\right)=T\binom{-9}{10}$. Therefore $T \underline{x}=$ $T\binom{-9}{10}$. Therefore $\underline{x}=\binom{-9}{10}$.
- $2 \underline{u}-3 \underline{v}=2 T\binom{3}{1}-3 T\binom{5}{4}=T\left(2\binom{3}{1}-3\binom{5}{4}\right)=T\binom{-9}{-10}$ so $T\binom{-9}{-10}=2 \underline{u}-3 \underline{v}$.

B - Linearity of a linear functional. OK
C - Definition of Kernel. OK
D - Basis.

- Suppse $\underline{v} \in \operatorname{Ker} \varphi$ and that $\underline{v}=a\left(\begin{array}{l}5 \\ 2 \\ 0\end{array}\right)+b\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)=\left(\begin{array}{c}5 a+3 b \\ 2 a \\ -2 b\end{array}\right)$. Then $\varphi \underline{v}=2(5 a+$ $3 b)-5(2 a)+3(-2 b)=0$. Thus any vector $\underline{v} \in \operatorname{Ker} \varphi$ can be written as a linear combination of $\left(\begin{array}{l}5 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)$ so they span $\operatorname{Ker} \varphi$.

3. Linear maps on $\mathbb{R}^{\mathbb{R}}$

For $\left(T_{a} f\right)(x)=f(x+a), W=\operatorname{Span}\left\{e^{r x} \mid r \in \mathbb{R}\right\}$.
B - Image of a linear map.
Show that $T_{a} W=W$.

- $T_{a}\left(e_{r}\right)=e_{r}(a) e_{r} \in W$ so $T_{a} W=W$.

