MORE EXAMPLES

1. Vector spaces and subspaces

Examples of calculations in \mathbb{R}^{3}. The sum of the vectors $\left(\begin{array}{l}5 \\ 7 \\ 8\end{array}\right),\left(\begin{array}{c}5 \\ 9 \\ -3\end{array}\right)$ is $\left(\begin{array}{l}5 \\ 7 \\ 8\end{array}\right)+$ $\left(\begin{array}{c}5 \\ 9 \\ -3\end{array}\right)=\left(\begin{array}{c}5+5 \\ 7+9 \\ 8+(-3)\end{array}\right)=\left(\begin{array}{c}10 \\ 16 \\ 5\end{array}\right) \cdot$ Similarly, $-2 \cdot\left(\begin{array}{c}5 \\ 9 \\ -3\end{array}\right)=\left(\begin{array}{c}-2(5) \\ -2(9) \\ -2(-3)\end{array}\right)=$ $\left(\begin{array}{c}-10 \\ -18 \\ 6\end{array}\right)$
Subspace / a non-subspace? (preparation for PS1 problem 4). In \mathbb{R}^{2} consider the set $\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}+x_{2}=1\right\}$. This is not a subspace - for example, $\binom{1}{0},\binom{0}{1}$ belong to this set but their sum doesn't (the zero vector also isn't, and is the first thing you should check for). Also consider the set $\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}^{2}-x_{2}^{2}=0\right\}$. This is not a subspace. For example, it contains $\binom{1}{1},\binom{1}{-1}$ but not their sum $\binom{1}{0}$. [Aside: note that if $x_{1}^{2}-x_{2}^{2}=0$ then $\left(a x_{1}\right)^{2}-\left(a x_{2}\right)^{2}=0$ also, so this set is closed under rescaling!).

Generally, you should expect a subspace to be defined by linear conditions not by polynomials of higher degree.
Something which is not a vector space. Consider the triple $\left(\mathbb{R}^{2},+, \cdot\right)$ where + is the usual addition of column vectors $\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}} \stackrel{\text { def }}{=}\binom{x_{1}+y_{1}}{x_{2}+y_{1}}$, but a. $\binom{x_{1}}{x_{2}} \stackrel{\text { def }}{=}\binom{a x_{1}}{0}$ for all a, x_{1}, x_{2}. All properties of addition will be satisfied, the distributive laws still hold (check!) and $(a b)\binom{x_{1}}{x_{2}}=a\left(b\binom{x_{1}}{x_{2}}\right)$ will still be true. But according to the definition above we have $1 \cdot\binom{0}{1}=\binom{1 \cdot 0}{0}=\binom{0}{0}$ and this is not the same as $\binom{0}{1}$ so the axiom about 1 does not hold. Tips.
(1) To show something is a vector space from the definitions, you need to go through all the axioms and check all of them.
(2) Almost always, though, the candidate vector space is a candidate subspace of a known space, and it's enough to check closure under the operations (and non-emptyness!)
(3) To show something is not a vector space, it's enough to show one axiom that fails; no more work is required.

2. Linear dependence and independence

Linear independence of two vectors. We check that $\left(\begin{array}{l}5 \\ 7 \\ 8\end{array}\right),\left(\begin{array}{c}5 \\ 9 \\ -3\end{array}\right)$ are independent in \mathbb{R}^{3}. We need to see if there's a non-zero solution to $a\left(\begin{array}{l}5 \\ 7 \\ 8\end{array}\right)+b\left(\begin{array}{c}5 \\ 9 \\ -3\end{array}\right)=$ $\underline{0}$. By definition of \mathbb{R}^{3} this is equivalent to $\left(\begin{array}{l}5 a+5 b \\ 7 a+9 b \\ 8 a-3 b\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ (we have converted out claim to a system of linear equations). The first equation now forces $b=-a$ while the second forces $b=-\frac{7}{9} a$ and the two are impossible at the same time unless $b=0$ and $a=0$, so the vectors are independent.
Linear dependence of a vector on three others. See problem 2 of PS3.
Linear dependence of a function on two others. Note that $\cos ^{2} x$ depends on 1 and $\cos 2 x$ on any interval since $\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x$.
Linear independence of an infinite set. In the \mathbb{R}^{∞} (the space of seqeuences) let \underline{v}_{k} be the sequence consisting of 1 appearing k times and then all zeroes. So $\underline{v}_{1}=(1,0,0,0,0,0, \cdots), \underline{v}_{2}=(1,1,0,0,0,0, \cdots), \underline{v}_{3}=(1,1,1,0,0,0, \cdots)$ and so on. We claim that $\left\{\underline{v}_{k}\right\}_{k=1}^{\infty}$ are independent.

- Let's see that $\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}$ are independent. Suppose that $a_{1} \underline{v}_{1}+a_{2} \underline{v}_{2}+a_{3} \underline{v}_{3}=$ 0. Let's write the first 5 terms of each sequence. We get the equality:

$$
\left(a_{1}+a_{2}+a_{3}, a_{2}+a_{3}, a_{3}, 0,0, \cdots\right)=(0,0,0,0,0, \cdots)
$$

Now looking at the third element we see $a_{3}=0$, and we can go back to the previous two to succesively show that $a_{2}=0$ and $a_{1}=0$.

- Compare this argument with that of PS1 problem 2(a).
- Now let's treat the general case. Suppose that some finite subset $S \subset$ $\left\{\underline{v}_{k}\right\}_{k=1}^{\infty}$ is linearly dependent.. Let n be the largest such that $\underline{v}_{n} \in S$. Then $S \subset\left\{\underline{v}_{k}\right\}_{k=1}^{n}(n$ is largest in $S)$. Linear dependence means there are coefficients a_{k}, not all zero, so that $\sum_{k=1}^{n} a_{k} \underline{v}_{k}=\underline{0}$. Now let $K \leq n$ be alrgest so that $a_{K} \neq 0$ (this exists since not all a_{k} are zero). Then $\sum_{k=1}^{K} a_{k} \underline{v}_{k}=\underline{0}$. Finally, consider the K th element of the sequence in the identity. for $k<K$ the K th element of \underline{v}_{k} is zero (only k ones). It follows that the K th element of $\sum_{k=1}^{K} a_{k} \underline{v}_{k}$ is a_{K} (since \underline{v}_{K} has 1 at the K th positiion). But this shows that $a_{K}=0$, a contradiction.
Summary. To prove a finite set is linearly independent:
(1) Set up the system of linear equations $\sum_{i} a_{i} \underline{v}_{i}=\underline{0}$
(2) Try to show that all the a_{i} are zero.

To prove that an infinite set is linearly independent
(1) Consider an arbitrary finite subset S of the set.
(2) Now you're dealing with a finite problem.

