MATH 100 - WORKSHEET 26 MINIMA AND MAXIMA, MVT

1. More Minima and Maxima

(1) Find the critical numbers of $f(x)=\left\{\begin{array}{ll}x^{3}-6 x^{2}+3 x & x \leq 3 \\ \sin (2 \pi x)-18 & x \geq 3\end{array}\right.$.

Solution: $f^{\prime}(x)=\left\{\begin{array}{ll}3 x^{2}-12 x+3 & x<3 \\ 2 \pi \cos (2 \pi x) & x>3\end{array}\right.$. Now $3 x^{2}-12 x+3=3\left(x^{2}-4 x+1\right)$ so possible critical points at $\frac{4 \pm \sqrt{16-4}}{2}=2 \pm \sqrt{3}$; but this agrees with f only when $x<3$ so get a critical point at $x=2-\sqrt{3} . \quad 2 \pi \cos (2 \pi x)=0$ iff $2 \pi x=\frac{\pi}{2}+\pi k, k \in \mathbb{Z}$ so also critical numbers at $x=\frac{1}{4}+\frac{k}{2}, k \in \mathbb{Z}_{\geq 6} . x=3$ is also a critical number (not differentiable since left/right derivatives don't agree).
(2) Find the absolute minimum and maximum of $g(x)=x e^{-x^{2} / 8}$ on
(a) $[-1,4]$

Solution: $g^{\prime}(x)=e^{-x^{2} / 8}-x e^{-x^{2} / 8}\left(-\frac{2 x}{8}\right)=\left(1-\frac{x^{2}}{4}\right) e^{-x^{2} / 8}$ so critical numbers at $x= \pm 2$. Only $x=2$ inside interval. We now evaluate $f: f(-1)=-e^{-1 / 8}, f(2)=2 e^{-1 / 2}, f(4)=4 e^{-2}$. f is differentiable so absolute minimum and maximum must occur at endpoints or critical points. Clearly $f(-1)$ is smallest (it's negative) so the absolute minimum is $-e^{-1 / 8}$. Between the other two, $e>2$ so $\frac{4}{e^{2}}<\frac{4}{2^{2}}=1$ while $e<4$ so $\frac{2}{\sqrt{3}}>\frac{2}{\sqrt{4}}=1$ so $f(2)=2 e^{-1 / 2}$ is larger and this is the absolute maximum.
(b) $[0, \infty)$

Solution: Only critical point at $x=2, f(2)=2 e^{-1 / 2}$. Also $f(0)=0$ and $\lim _{x \rightarrow \infty} f(x)=0$ so indeed $f(2)$ is maximum; 0 is minimum, attained at $x=0$ (wrong: "also at $x=\infty$ " since ∞ is not a number).
(3) Show that the function $3 x^{3}+2 x-1+\sin x$ has no local maxima or minima.

Solution: The derivative is $9 x^{2}+2+\cos x=9 x^{2}+1+(1+\cos x) \geq 1>0$.

2. The Mean Value Theorem

Theorem. Let f be defined differentiable on $[a, b]$. Then there is $a<c<b$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$. Equivalently, for any x there is c between a, x so that $f(x)=f(a)+f^{\prime}(c)(x-a)$.
(1) Let $f(x)=e^{x}$ on the interval $[0,1]$. Find all values of c so that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.

Solution: Need c so that $e^{c}=\frac{e-1}{1-0}=e-1$ so $c=\ln (e-1)$ is the only value.
(2) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$.

Solution: Need c so that $\operatorname{sgn}(c)=\frac{2-1}{2-(-1)}=\frac{1}{3}$ so no value, but f is not differentiable on the whole interval.
(3) Suppose that $f^{\prime}(x)>0$ for all x. Show that $f(b)>f(a)$ for all $b>a$. (Hint: consider the sign of $\left.\frac{f(b)-f(a)}{b-a}\right)$.

Solution: Given a, b there is c such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)>0$. Multiply by $b-a>0$.
(4) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero.

Solution: Zero exists by IVT: this function is continuous, $f(100)>0, f(-100)<0$. Two zeroes would contradict monotonicity (checked that $f^{\prime}>0$ earlier). Alternative: if $f(a)=f(b)=0$ then $\frac{f(b)-f(a)}{b-a}=0$ but $f^{\prime}(c) \neq 0$ for all c.
Corollary (Monotone function test). Let f be a function such that f^{\prime} exists and is continuous on $[a, b]$. Suppose that $f^{\prime}(x) \neq 0$ for $a<x<b$. Then f has an inverse function on this interval.

