1. A cylindrical tank with radius 5 m is being filled with water at a rate of $3 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the height of the water rising?
Solution: Let R be the radius of the tank, $H(t)$ the height of the water at time t, and $V(t)$ the volume of the water. We then have $V(t)=\left(\pi R^{2}\right) H(t)$ and hence $V^{\prime}(t)=\left(\pi R^{2}\right) H^{\prime}(t)$ and $H^{\prime}(t)=\frac{V^{\prime}(t)}{\pi R^{2}}$. Plugging in the values we get

$$
H^{\prime}(t)=\frac{3}{\pi\left(5^{2}\right)} \frac{\mathrm{m}}{\min }=\frac{3}{25 \pi} \frac{\mathrm{~m}}{\min } .
$$

2. Two sides of a triangle have legnths 12 m and 15 m . The angle between them is increasing at a rate of $2^{\circ} / \mathrm{min}$. How fast is the length of the third side increasing when the angle between the sides of fixed length is 60° ? For your reference, if the sides of the triangle are a, b, c and the angle α of the triangle is opposite the side of length a then the law of cosines reads

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \alpha .
$$

Solution: Let b, c be the lengths of the sides of fixed length, α the angle between them, measured in radians. Let a be the length of the third side. Then differentiating the law of cosines we have

$$
2 a \cdot a^{\prime}=2 b c(\sin \alpha) \alpha^{\prime}
$$

and hence

$$
a^{\prime}=\frac{b c}{a}(\sin \alpha) \alpha^{\prime} .
$$

Measuring side lengths in metres we plug in $b=12, c=15$, and at the time that $\alpha=60^{\circ}$ we have $a^{2}=12^{2}+15^{2}-2 \cdot 12 \cdot 15 \cos 60^{\circ}=144+225-360 \frac{1}{2}=369-180=$ 169 so $a=\sqrt{169}=13$. Next, $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$. Finally, at the time where $\alpha=60^{\circ}$, $\alpha^{\prime}=2^{\circ} / \mathrm{min}=2 \cdot \frac{2 \pi}{360} \frac{\mathrm{rad}}{\mathrm{min}}$. It follows that

$$
\begin{aligned}
a^{\prime} & =\frac{12 \cdot 15}{13} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{90} \frac{\mathrm{~m}}{\mathrm{~min}} \\
& =\frac{\sqrt{3} \pi}{13} \frac{\mathrm{~m}}{\mathrm{~min}} .
\end{aligned}
$$

3. Estimate $1001^{1 / 3}=\sqrt[3]{1001}$ using a linear approximation.

Solution: Let $f(x)=x^{1 / 3}$. Then the linear approximation to f at $a=1000$ is $f(x)=f(a)+f^{\prime}(a)(x-a)$. Since $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$ we have $f(1000)=10, f^{\prime}(1000)=\frac{1}{3 \cdot 100}$ so

$$
f(1001) \approx 10+\frac{1}{3 \cdot 100} \cdot 1=10 \frac{1}{300} .
$$

