1. A cylindrical tank with radius 5m is being filled with water at a rate of $3m^3/\min$. How fast is the height of the water rising? **Solution:** Let R be the radius of the tank, H(t) the height of the water at time t, and V(t) the volume of the water. We then have $V(t) = (\pi R^2)H(t)$ and hence $V'(t) = (\pi R^2)H'(t)$ and $H'(t) = \frac{V'(t)}{\pi R^2}$. Plugging in the values we get

$$H'(t) = \frac{3}{\pi(5^2)} \frac{\mathrm{m}}{\mathrm{min}} = \frac{3}{25\pi} \frac{\mathrm{m}}{\mathrm{min}}$$

2. Two sides of a triangle have legnths 12m and 15m. The angle between them is increasing at a rate of $2^{\circ}/\text{min}$. How fast is the length of the third side increasing when the angle between the sides of fixed length is 60° ? For your reference, if the sides of the triangle are a, b, c and the angle α of the triangle is opposite the side of length a then the law of cosines reads

$$a^2 = b^2 + c^2 - 2bc\cos\alpha.$$

Solution: Let b, c be the lengths of the sides of fixed length, α the angle between them, *measured in radians*. Let a be the length of the third side. Then differentiating the law of cosines we have

$$2a \cdot a' = 2bc \left(\sin \alpha\right) \alpha'$$

and hence

$$a' = \frac{bc}{a} (\sin \alpha) \, \alpha' \, .$$

Measuring side lengths in metres we plug in b = 12, c = 15, and at the time that $\alpha = 60^{\circ}$ we have $a^2 = 12^2 + 15^2 - 2 \cdot 12 \cdot 15 \cos 60^{\circ} = 144 + 225 - 360\frac{1}{2} = 369 - 180 = 169$ so $a = \sqrt{169} = 13$. Next, $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$. Finally, at the time where $\alpha = 60^{\circ}$, $\alpha' = 2^{\circ}/\min = 2 \cdot \frac{2\pi}{360} \frac{\text{rad}}{\min}$. It follows that

$$a' = \frac{12 \cdot 15}{13} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{90} \frac{\mathrm{m}}{\mathrm{min}}$$
$$= \frac{\sqrt{3\pi}}{13} \frac{\mathrm{m}}{\mathrm{min}}.$$

3. Estimate $1001^{1/3} = \sqrt[3]{1001}$ using a linear approximation.

Solution: Let $f(x) = x^{1/3}$. Then the linear approximation to f at a = 1000 is f(x) = f(a) + f'(a)(x-a). Since $f'(x) = \frac{1}{3}x^{-2/3}$ we have f(1000) = 10, $f'(1000) = \frac{1}{3\cdot 100}$ so

$$f(1001) \approx 10 + \frac{1}{3 \cdot 100} \cdot 1 = 10\frac{1}{300}$$