1. Find 2 by implicit differentiation if
Y =g — Y.

Solution: We differentiate both sides, and find:
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Rearranging this reads:
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2. Differentiate

Yy =varctanzx.

Solution: We can write this as arctan x = y? and hence tany?> = . We now differen-

tiate, using that d(tsi;y) =1+ tan?y to get
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3. Find ¢ at the point where z = 0 if
xy+e’ =e.

Solution: Setting z = 0 we find €¥(?) = e = e! so y(0) = 1 and the point on the curve
is (0,1). We now differentiate both sides, using the product rule and the chain rule to
get:
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When x = 0 and y = 1 this reads
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