Problem A runner jogs around circular track of radius 100 m at the speed of $7 \frac{\mathrm{~km}}{\mathrm{~h}}$. A friend is standing 200 m from the center of the circle watching him. How fast is the distance between them changing when that distance is 200 m ?

Solution 1 Choose the co-ordinate system so that the origin is at the center of the circle and the friend is at $(200 \mathrm{~m}, 0)$. Let R be the radius of the circle, L the distance to the friend, V the velocity. Suppose that the runner is at position $(x, y)=(x(t), y(t))$ a time t. The data is then:

$$
\begin{array}{ll}
x^{2}+y^{2}=R^{2} & \text { running on the circle } \\
\dot{x}^{2}+\dot{y}^{2}=V^{2} & \text { fixed velocity } \tag{2}
\end{array}
$$

The distance $D=D(t)$ to the friend satisfies

$$
\begin{align*}
D^{2} & =(x-L)^{2}+(y-0)^{2} \\
& =x^{2}-2 x L+L^{2}+y^{2} \\
& =R^{2}+L^{2}-2 x L \tag{3}
\end{align*}
$$

Differentiating (note that R, L are constants) we find

$$
2 D \cdot \dot{D}=-2 L \dot{x}
$$

and hence

$$
\begin{equation*}
\dot{D}=-\frac{L}{D} \dot{x} \tag{4}
\end{equation*}
$$

To find \dot{x} we differentiate the constraint (1) to get $2 x \dot{x}+2 y \dot{y}=0$ and hence $\dot{y}=-\frac{x}{y} \dot{x}$. Plugging into the velocity constraint (2) we get

$$
\dot{x}^{2}+\left(-\frac{x}{y} \cdot \dot{x}\right)^{2}=V^{2}
$$

so

$$
\left(1+\frac{x^{2}}{y^{2}}\right) \dot{x}^{2}=V^{2}
$$

and

$$
\dot{x}^{2}=\frac{V^{2} y^{2}}{x^{2}+y^{2}}=\frac{V^{2}}{R^{2}} y^{2}
$$

Taking the square root we find

$$
\begin{equation*}
\dot{x}= \pm \frac{V}{R} y \tag{5}
\end{equation*}
$$

(don't know sign since we don't know whether the runner is running clockwise or anti-clockwise). Plugging (5) into (4) we get

$$
\dot{D}= \pm \frac{L y}{D R} V
$$

We'd like to write this as a function of D, which is given. From (3) we get that when the distance is D, the runner is at (x, y) with $x=\frac{R^{2}+L^{2}-D^{2}}{2 L}$ and $y= \pm \sqrt{R^{2}-x^{2}}= \pm R \sqrt{1-\left(\frac{x}{R}\right)^{2}}$.

Measuring distances in metres, we're given $R=100, L=D=200$ so $x=25$ and $\frac{y}{R}= \pm \frac{\sqrt{15}}{4}$ so $\dot{D}=\frac{\sqrt{15}}{7} V$. Inputting $V=7$ we get

$$
\dot{D}= \pm \frac{7 \sqrt{15}}{4} \frac{\mathrm{Km}}{\mathrm{~h}} .
$$

Solution 2 With the same coordinate system suppose that the line between the runner and the origin makes angle α with the positive x-axis. The runner is then at $(R \cos \alpha, R \sin \alpha)$ and hence at distance

$$
\begin{aligned}
D^{2} & =(R \cos \alpha-L)^{2}+(R \sin \alpha)^{2} \\
& =R^{2} \cos ^{2} \alpha-2 L R \cos \alpha+L^{2}+R^{2} \sin ^{2} \alpha \\
& =R^{2}+L^{2}-2 L R \cos \alpha .
\end{aligned}
$$

Differentiating we find

$$
2 D \dot{D}=2 L R(\sin \alpha) \dot{\alpha}
$$

Since $V=R \dot{\alpha}$ (arclength is radius times angle), this means

$$
\dot{D}=\frac{L V}{D} \sin \alpha
$$

so it remains to find $\sin \alpha$ at the given time. For this we use $\cos \alpha=\frac{R^{2}+L^{2}-D^{2}}{2 L R}=$ $\frac{1}{4}$ to get $\sin \alpha= \pm \sqrt{1-\cos ^{2} \alpha}= \pm \frac{\sqrt{15}}{4}$ and again

$$
\dot{D}= \pm \frac{7 \sqrt{15}}{4} \frac{\mathrm{Km}}{\mathrm{~h}} .
$$

