Problem The corner of a paper of size $L \times W$ (L is the long side) is folded so that the corner touches the opposite long side. What is the shortest possible crease?

Solution 1 Let the piece of paper have corners $A B C D$ in cyclic order with $|A B|=|C D|=L$ (long side) and $|B C|=|D A|=W$ (short side). Let $P \in \overline{A B}$, $Q \in \overline{A D}$ be the endpoints of the fold, and let $R \in \overline{C D}$ be the point the corner A lands at after folding. Then the triangles $\triangle P A Q$ and $\triangle P R Q$ are congruent.

Write $x=|A Q|, y=|A P|$, and let $z=|P Q|=\sqrt{x^{2}+y^{2}}$ be the length of the fold.

By the congruence above, $|Q R|=x$; also $|Q D|=W-x$, and since $\triangle Q D R$ is right-angled, we see that $|D R|=\sqrt{x^{2}-(W-x)^{2}}=\sqrt{2 W x-W^{2}}$. By the congruence of the triangles we also have $|P R|=y$. Let ℓ be a line through P parallel to the short sides $\overline{D A}, \overline{B C}$, let let $\overline{C D} \cap \ell=\left\{P^{\prime}\right\}$. Then $\triangle P P^{\prime} R$ is right-angled, so $y^{2}=W^{2}+\left|P^{\prime} R\right|^{2}=W^{2}+\left(y-\sqrt{2 W x-W^{2}}\right)^{2}$. We can rewrite this as

$$
y^{2}=W^{2}+y^{2}+\left(2 W x-W^{2}\right)-2 y \sqrt{2 W x-W^{2}}
$$

(note that $x \geq \frac{W}{2}$ since $H \leq|A R| \leq|A Q|+|Q R|=2 x$ so ${\sqrt{2 W x-W^{2}}}^{2}=$ $2 W x-W^{2}$). Solving for y we find

$$
y=\frac{W x}{\sqrt{2 W x-W^{2}}} .
$$

It follows that

$$
\begin{aligned}
z^{2} & =x^{2}+\frac{W^{2} x^{2}}{2 W x-W^{2}} \\
& =\frac{2 x^{3}}{2 x-W} .
\end{aligned}
$$

To find the location of the minimum we differentiate $Z(x)=z^{2}(x)$ with respect to x to see:

$$
\begin{aligned}
Z^{\prime}(u) & =\frac{6 x^{2}(2 x-W)-2 x^{3}(2)}{(2 x-W)^{2}}= \\
& =\frac{8 x^{3}-6 W x^{2}}{(2 x-W)^{2}} \\
& =\frac{8 x^{2}}{(2 x-W)^{2}}\left(x-\frac{3}{4} W\right)
\end{aligned}
$$

It follows that the derivative is negative when $x<\frac{3}{4} W$, positive when $x>\frac{3}{4} W$ so there is a minimum when $x=\frac{3}{4} W$.

Note, however, that we must have $y \leq L$. For $x=\frac{3}{4} W$ we have $y=$ $\frac{3}{4} \frac{1}{\sqrt{2 \frac{3}{4}-1}} W=\frac{3}{\sqrt{8}} W$, so the minimum occurs at $x=\frac{3}{4} W$ only if $L \geq \frac{3}{\sqrt{8}} W$ (otherwise the minimum occurs for the longest x possible), that is for the crease such that $P=B$.

Solution 2 Let the piece of paper have corners ABCD in cyclic order with $|A B|=|C D|=L$ (long side) and $|B C|=|D A|=W$ (short side). Let $P \in \overline{A B}$, $Q \in \overline{B C}$ be the endpoints of the fold, and let $R \in \overline{C D}$ be the point the corner B lands on after folding. Then the triangles $\triangle P B Q$ and $\triangle P R Q$ are congruent.

Write $x=|B Q|, y=|P B|$, and let $z=|P Q|=\sqrt{x^{2}+y^{2}}$ be the length of the fold.

Let ℓ be a line through P parallel to the short sides $\overline{D A}, \overline{B C}$, let let $\overline{C D} \cap \ell=$ $\left\{P^{\prime}\right\}$. Then $\triangle P P^{\prime} R$ is right-angled, so $\left|P^{\prime} R\right|^{2}=y^{2}-W^{2}$. It follows that $|R C|=y-\sqrt{y^{2}-W^{2}}$.

Next, the triangles $\triangle P P^{\prime} R$ and $\triangle R D Q$ are similar (they are both rightangled and $\left.\angle P R P^{\prime}+\angle D R Q=\pi-\angle P R Q=\pi-\frac{\pi}{2}=\frac{\pi}{2}\right)$ so $x=|R Q|=$ $|P R| \frac{|R C|}{\left|P P^{\prime}\right|}=\frac{y}{W}\left(y-\sqrt{y^{2}-W^{2}}\right)$. It follows that

$$
\begin{aligned}
Z & =z^{2}=\frac{y^{2}}{W^{2}}\left(y^{2}+\left(y^{2}-W^{2}\right)-2 y \sqrt{y^{2}-W^{2}}\right)+y^{2} \\
& =\frac{2 y^{4}}{W^{2}}-\frac{2 y^{3} \sqrt{y^{2}-W^{2}}}{W^{2}}
\end{aligned}
$$

Dividing by 2 and differentiating,

$$
\frac{W^{2}}{2} Z^{\prime}=4 y^{3}-3 y^{2} \sqrt{y^{2}-W^{2}}-\frac{y^{4}}{\sqrt{y^{2}-W^{2}}}
$$

So, other than $y=0, Z^{\prime}=0$ if

$$
4 y=\frac{4 y^{2}-3 W^{2}}{\sqrt{y^{2}-W^{2}}}
$$

So

$$
16\left(y^{2}-W^{2}\right) y^{2}=16 y^{4}+9 W^{2}-24 y^{2} W^{2}
$$

So

$$
8 W^{2} y^{2}=9 W^{2}
$$

so

$$
\frac{y}{W}=\frac{3}{\sqrt{8}}
$$

if this is in the domain (that is, if $L \geq \frac{3}{\sqrt{8}} W$), at which point

$$
x=W \frac{y}{W}\left(\frac{y}{W}-\sqrt{\left(\frac{y}{W}\right)^{2}-1}\right)=\frac{3}{\sqrt{8}}\left(\frac{3}{\sqrt{8}}-\sqrt{\frac{9}{8}-1}\right) W=\frac{3}{\sqrt{8}} \cdot \frac{2}{\sqrt{8}} W=\frac{3}{4} W .
$$

This is the global minimum.
Conclusion: If $L \geq \frac{3}{\sqrt{8}} W$ then the shortest crease occurs when $x=\frac{3}{4} W$.
If $L<\frac{3}{\sqrt{8}} W$ the shortest crease occurs when $x=\frac{L}{W}\left(\frac{L}{W}-\sqrt{\left(\frac{L}{W}\right)^{2}-1}\right) W$.

Solution 3 Let the piece of paper have corners ABCD in cyclic order with $|A B|=|C D|=L$ (long side) and $|B C|=|D A|=W$ (short side). Let $P \in \overline{A B}$, $Q \in \overline{A D}$ be the endpoints of the fold, and let $R \in \overline{C D}$ be the point the corner A lands at after folding. Then the triangles $\triangle P A Q$ and $\triangle P R Q$ are congruent.

Write $x=|A Q|, y=|A P|$, and let $z=|P Q|=\sqrt{x^{2}+y^{2}}$ be the length of the fold.

Let $r=|D R|$. Then $(W-x)^{2}+r^{2}=x^{2}$ so

$$
x=\frac{r^{2}+W^{2}}{2 W}
$$

Next, from the similarity of the triangles $\triangle P P^{\prime} R$ and $\triangle R D Q, \frac{|P R|}{\left|P P^{\prime}\right|}=\frac{|R Q|}{|R D|}$ so $\frac{y}{W}=\frac{x}{r}$, that is

$$
y=\frac{W x}{r}=\frac{r^{2}+W^{2}}{2 r}
$$

Now the constraint $y \leq L$ is equivalent to $r^{2}+W^{2} \leq 2 r L$, that is $(r-L)^{2} \leq$ $L^{2}-W^{2}$, or $L-\sqrt{L^{2}-W^{2}} \leq r \leq L+\sqrt{L^{2}-W^{2}}$, and the constraint $x \leq W$ is equivalent to $r \leq W$, so $L-\sqrt{L^{2}-W^{2}} \leq r \leq W$.

It follows that

$$
\begin{aligned}
4 Z(r) & =4 x^{2}+4 y^{2}=\left(r^{2}+W^{2}\right)^{2}\left(\frac{1}{W^{2}}+\frac{1}{r^{2}}\right) \\
& =\frac{\left(r^{2}+W^{2}\right)^{3}}{r^{2} W^{2}}
\end{aligned}
$$

We now optimize in r.

$$
\begin{aligned}
4 Z^{\prime}(r) & =\frac{6\left(r^{2}+W^{2}\right)^{2} r}{r^{2} W^{2}}-\frac{2\left(r^{2}+W^{2}\right)^{3}}{r^{3} W^{2}} \\
& =\frac{2\left(r^{2}+W^{2}\right)^{2}}{r W^{2}}\left(3-\frac{r^{2}+W^{2}}{r^{2}}\right) \\
& =\frac{2\left(r^{2}+W^{2}\right)^{2}}{r W^{2}}\left(2-\frac{W^{2}}{r^{2}}\right)
\end{aligned}
$$

It follows that if $L-\sqrt{L^{2}-W^{2}} \leq \frac{W}{\sqrt{2}}$, that is $L \geq \frac{3}{\sqrt{8}} W$, the minimum occurs when $r=\frac{W}{\sqrt{2}}$, at which point

$$
x=\frac{W^{2} / 2+W^{2}}{2 W}=\frac{3}{4} W .
$$

If $W \leq L<\frac{3}{\sqrt{8}} W$ then $Z(r)$ is monotone in r and the minimum occurs for the shortest r, that is for $r=L-\sqrt{L^{2}-W^{2}}$, at which point $x=\frac{L}{W}\left(\frac{L}{W}-\sqrt{\left(\frac{L}{W}\right)^{2}-1}\right) W$.

