## Math 342 Problem set 12 (not for submission) <br> The subgroup generated by an element

1. Let $G$ be a group, $g \in G$. Define a function $f: \mathbb{N} \rightarrow G$ by setting $f(0)=e, f(n+1)=f(n) \cdot g$. Extend $f$ to a function $f: \mathbb{Z} \rightarrow G$ by setting $f(-n)=f(n)^{-1}$.
(a) What is $f(1)$ ?
(b) Show that for all $m, n \in \mathbb{N}, f(m+n)=f(m) \cdot f(n)$.
(c) Let $n, m \in \mathbb{N}$ with $n>m$. Show that $f((-m)+n)=f(-m) \cdot f(n)$.

Hint: Show that $f(m) \cdot f((-m)+n)=f(m) \cdot(f(-m) \cdot f(n))$ [for the LHS use part (b), for the second associativity] then use problem 3.
(d) Show that $f(n+m)=f(n) \cdot f(m)$ for all $n, m \in \mathbb{Z}$.

We have shown: for any group $G$ and element $g \in G$ there exists a group homomorphism $f:(\mathbb{Z}, 0,+) \rightarrow G$ such that $f(1)=g$.
OPTIONAL Show that such $f$ is unique.
Because of this we usually write $f(n)$ as $g^{n}$.
2. (Continuation)
(a) Let $I=\{n \in \mathbb{Z} \mid f(n)=e\}$. Show that $0 \in I$ and that $I$ is closed under addition.
(b) Show that $I$ is closed under multiplication by elements of $\mathbb{Z}$.

Hint: Multiplication is repeated addition.
OPTIONAL Show that $f$ descends to an injection $g: \mathbb{Z} / I \hookrightarrow G$.

## Subgroups and Lagrange's Theorem

Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, and let $B=\left\{\left(\begin{array}{ll}a & b \\ & d\end{array}\right) \in G\right\}, N=\left\{\left(\begin{array}{ll}1 & b \\ & 1\end{array}\right) \in G\right\}, T=\left\{\left(\begin{array}{ll}a & \\ & d\end{array}\right) \in G\right\}$.
In Problem Set 11 we saw that the order of $G$ (the number of its elements) is $(p+1) p(p-1)^{2}$.
3. (orders of the groups)
(a) Find the order of $N$.
(b) Find the order of $T$.
(c) Find the order of $B$.
(d) Check that $\# B=\# N \cdot \# T$.
4. (Lagrange's Theorem) Among the groups $G, B, N, T$ find all pairs such that one is a subgroup of the other. In each case verify that the order of the subgroup divides the order of the larger group. (For example: $N$ is a subgroup of $G$ so its order must divide the order of $G$ ).
5. $(B / T$; see Example 181 in the notes)
(a) Let $n_{1}, n_{2} \in N$ be distinct. Show that $n_{1} \not \equiv{ }_{L} n_{2}(T)$. Conclude that all elements of $N$ belong to different costs modulu $T$.
Hint: what is $n_{2}^{-1} n_{1}$ ? When would it belong to $T$ ?
(b) Use Lagrange's Theorem and your answer to 1 (d) to show that $N$ is a complete system of representatives for $B / T$.
Hint: Can the number of cosets be larger than $\# N$ ?
(c) Let $g=\left(\begin{array}{ll}a & b \\ & d\end{array}\right) \in B$ and let $t=\left(\begin{array}{ll}\alpha & \\ & \delta\end{array}\right) \in T$. Calculate the product $g t \in B$.
(d) Given $g$, find $t$ so that $g t \in N$. Conclude that every element of $B$ belongs to the coset of an element of $N$ and again show that $N$ is a complete system of representatives.

OPTIONAL Following the same steps, show that $T$ is a system of coset representatives for $G / N$.

## A group isomorphism

6. Let $F$ be a field, $G=\mathrm{GL}_{n}(F), V=F^{n}, X=V \backslash\{\underline{0}\}$ the set of non-zero vectors.
(a) Show that for any $g \in G, x \in X$, we also have $g x \in X$.
(b) Show that for any $g \in G$, the map $\sigma_{g}: X \rightarrow X$ given by $\sigma_{g}(x)=g x$ is a bijection of $X$ to itself.
Hint: find an inverse to the map.
(c) Show that the map $g \mapsto \sigma_{g}$ is a group homomorphism $G \rightarrow S_{X}$.
(d) Assume that $\sigma_{g}$ is the identity permutation. Show that $g$ is the identity matrix. Conclude that the map from part (c) is injective.
(e) Now assume $F=\mathbb{F}_{2}, n=2$. What are the sizes of $G$ ? Of $V$ ? of $X$ ? Show that in this case the map from part (c) is surjective, hence an isomorphism.

## Optional Problems

A. Let $R$ be a commutative ring, $I \subset R$ an ideal (a non-empty subset closed under addition and under multiplication by elemenets of $R$ ). Consider the relation $f \equiv g(I) \Longleftrightarrow f-g \in I$ defined for $f, g \in R$.
(a) Show that $f \equiv g(R)$ is an equivalence relation.
(b) Show that the set $R / I$ of equivalence classes has a natural ring structure so that the map $Q: R \rightarrow R / I$ given by $Q(f)=[f]_{I}$ is a surjective ring homomorphism.
(c) Let $J$ be an ideal of $R / I$. Show that $F^{-1}(J)$ is an ideal of $R$.
(d) Assume that every ideal of $R$ is principal. Show that every ideal of $R / I$ is principal.
B. Let $F$ be a field, $R=F[x], I=\left(x^{n}-1\right)=\left\{f\left(x^{n}-1\right) \mid f \in R\right\}, \bar{R}=R / I$. Show that the restriction of the quotient map $Q: R \rightarrow \bar{R}$ to the subset $F[x]^{<n}$ is bijective. It is an isomorphism of vector spaces over $F$.
C. The cyclic group $C_{n}$ acts on $F^{n}$ by cyclically permuting the co-ordinates. Show that under the usual identifications of $F^{n}$ with $F[x]^{<n}$ and $F[x]^{<n}$ with $F[x] /\left(x^{n}-1\right)$, the action of the generator of $C_{n}$ in $F^{n}$ corresponds to multiplication by $x$ in $\bar{R}$.
D. Let $C \subset F^{n}$ be a cyclic code, that is a code for which if $\underline{v}=\left(v_{1}, \ldots, v_{n}\right)$ is a code word then $\left(v_{2}, v_{3}, v_{4}, \ldots, v_{n}, v_{1}\right)$ is also a codeword. Show that under the correspondence above a cyclic code $C$ is the same as an ideal in $\bar{R}$.
Hint: Let $J \subset F[x]$ be a linear subspace closed under multiplication by $x$. Show by induction on the degree of $f \in F[x]$ that $J$ is closed under multiplication by $f$.
E. Let $C$ be a cyclic code, $J \subset \bar{R}$ the corresponding ideal. Let $g \in R$ be a polynomial of minimal degree such that $Q(g)$ generates $J$ (this exists by problem A(d)). Show that $G C D\left(g, x^{n}-1\right)$ also generates $J$. Conclude that $g \mid x^{n}-1$.

