Math 342 Problem set 12 (not for submission)

The subgroup generated by an element

- 1. Let *G* be a group, $g \in G$. Define a function $f \colon \mathbb{N} \to G$ by setting f(0) = e, $f(n+1) = f(n) \cdot g$. Extend *f* to a function $f \colon \mathbb{Z} \to G$ by setting $f(-n) = f(n)^{-1}$.
 - (a) What is f(1)?
 - (b) Show that for all $m, n \in \mathbb{N}$, $f(m+n) = f(m) \cdot f(n)$.
 - (c) Let $n, m \in \mathbb{N}$ with n > m. Show that $f((-m) + n) = f(-m) \cdot f(n)$. *Hint:* Show that $f(m) \cdot f((-m) + n) = f(m) \cdot (f(-m) \cdot f(n))$ [for the LHS use part (b), for the second associativity] then use problem 3.
 - (d) Show that f(n+m) = f(n) ⋅ f(m) for all n, m ∈ Z.
 We have shown: for any group G and element g ∈ G there exists a group homomorphism f: (Z,0,+) → G such that f(1) = g.
 - OPTIONAL Show that such f is *unique*. Because of this we usually write f(n) as g^n .
- 2. (Continuation)
 - (a) Let $I = \{n \in \mathbb{Z} \mid f(n) = e\}$. Show that $0 \in I$ and that *I* is closed under addition.
 - (b) Show that *I* is closed under multiplication by elements of \mathbb{Z} .

Hint: Multiplication is repeated addition.

OPTIONAL Show that f descends to an injection $g: \mathbb{Z}/I \hookrightarrow G$.

Subgroups and Lagrange's Theorem

Let
$$G = \operatorname{GL}_2(\mathbb{F}_p)$$
, and let $B = \left\{ \begin{pmatrix} a & b \\ d \end{pmatrix} \in G \right\}, N = \left\{ \begin{pmatrix} 1 & b \\ 1 \end{pmatrix} \in G \right\}, T = \left\{ \begin{pmatrix} a \\ d \end{pmatrix} \in G \right\}$.

In Problem Set 11 we saw that the order of G (the number of its elements) is $(p+1)p(p-1)^2$.

- 3. (orders of the groups)
 - (a) Find the order of *N*.
 - (b) Find the order of T.
 - (c) Find the order of *B*.
 - (d) Check that $#B = #N \cdot #T$.
- 4. (Lagrange's Theorem) Among the groups G, B, N, T find all pairs such that one is a subgroup of the other. In each case verify that the order of the subgroup divides the order of the larger group. (For example: *N* is a subgroup of *G* so its order must divide the order of *G*).
- 5. (B/T; see Example 181 in the notes)
 - (a) Let $n_1, n_2 \in N$ be distinct. Show that $n_1 \not\equiv_L n_2(T)$. Conclude that all elements of *N* belong to different costs modulu *T*.
 - *Hint*: what is $n_2^{-1}n_1$? When would it belong to *T*?
 - (b) Use Lagrange's Theorem and your answer to 1(d) to show that N is a complete system of representatives for B/T.

Hint: Can the number of cosets be larger than #*N*?

- (c) Let $g = \begin{pmatrix} a & b \\ & d \end{pmatrix} \in B$ and let $t = \begin{pmatrix} \alpha \\ & \delta \end{pmatrix} \in T$. Calculate the product $gt \in B$.
- (d) Given g, find t so that $gt \in N$. Conclude that every element of B belongs to the coset of an element of N and again show that N is a complete system of representatives.

OPTIONAL Following the same steps, show that T is a system of coset representatives for G/N.

A group isomorphism

- 6. Let *F* be a field, $G = GL_n(F)$, $V = F^n$, $X = V \setminus \{\underline{0}\}$ the set of non-zero vectors.
 - (a) Show that for any $g \in G$, $x \in X$, we also have $gx \in X$.
 - (b) Show that for any $g \in G$, the map $\sigma_g \colon X \to X$ given by $\sigma_g(x) = gx$ is a bijection of X to itself.

Hint: find an inverse to the map.

- (c) Show that the map $g \mapsto \sigma_g$ is a group homomorphism $G \to S_X$.
- (d) Assume that σ_g is the identity permutation. Show that g is the identity matrix. Conclude that the map from part (c) is injective.
- (e) Now assume $F = \mathbb{F}_2$, n = 2. What are the sizes of *G*? Of *V*? of *X*? Show that in this case the map from part (c) is surjective, hence an isomorphism.

Optional Problems

- A. Let *R* be a commutative ring, $I \subset R$ an ideal (a non-empty subset closed under addition and under multiplication by elemenets of *R*). Consider the relation $f \equiv g(I) \iff f g \in I$ defined for $f, g \in R$.
 - (a) Show that $f \equiv g(R)$ is an equivalence relation.
 - (b) Show that the set R/I of equivalence classes has a natural ring structure so that the map $Q: R \to R/I$ given by $Q(f) = [f]_I$ is a surjective ring homomorphism.
 - (c) Let *J* be an ideal of R/I. Show that $F^{-1}(J)$ is an ideal of *R*.
 - (d) Assume that every ideal of R is principal. Show that every ideal of R/I is principal.
- B. Let *F* be a field, R = F[x], $I = (x^n 1) = \{f(x^n 1) \mid f \in R\}$, $\overline{R} = R/I$. Show that the restriction of the quotient map $Q: R \to \overline{R}$ to the subset $F[x]^{<n}$ is bijective. It is an isomorphism of vector spaces over *F*.
- C. The cyclic group C_n acts on F^n by cyclically permuting the co-ordinates. Show that under the usual identifications of F^n with $F[x]^{<n}$ and $F[x]^{<n}$ with $F[x]/(x^n-1)$, the action of the generator of C_n in F^n corresponds to multiplication by x in \overline{R} .
- D. Let $C \subset F^n$ be a *cyclic code*, that is a code for which if $\underline{v} = (v_1, \dots, v_n)$ is a code word then $(v_2, v_3, v_4, \dots, v_n, v_1)$ is also a codeword. Show that under the correspondence above a cyclic code *C* is the same as an ideal in \overline{R} . *Hint*: Let $J \subset F[x]$ be a linear subspace closed under multiplication by *x*. Show by induction

Hint: Let $J \subseteq F[x]$ be a linear subspace closed under multiplication by x. Show by induction on the degree of $f \in F[x]$ that J is closed under multiplication by f.

E. Let *C* be a cyclic code, $J \subset \overline{R}$ the corresponding ideal. Let $g \in R$ be a polynomial of minimal degree such that Q(g) generates *J* (this exists by problem A(d)). Show that $GCD(g, x^n - 1)$ also generates *J*. Conclude that $g|x^n - 1$.