Math 342 Problem set 11 (due 29/11/11)

Reed-Solomon decoding

- 1. Working over the field \mathbb{F}_5 , the sender has enocded two-digit messages by evaluating the associated linear polynomial at the 4 non-zero points of \mathbb{F}_5 in order. You receive the transmissions below, which may contained corrupted bits. For each 4-tuple find the linear polynomial which passes through as many points as possible.
 - (a) $\underline{v}' = (1, 2, 3, 3)$.
 - (b) $\underline{v}' = (4, 1, 3, 0)$.
 - (c) $\underline{v}' = (2,4,3,1)$.

The symmetric group

2. Multiply (compose) the following permutations in S_4 . Explain why the answers to (b) and (d) are the same.

(a)	(1	2	3	4 \	(1	2	3	4	
	$\begin{pmatrix} 1 \end{pmatrix}$	3	2	4)	4	3	2	1)	
(b)	(1)	2	3	4	(1)	2	3	4	
	(4	2	3	1]	$\left(2\right)$	1	4	3)	
(c)	(1	2	3	4	(1)	2	3	4	
	(4	3	2	1]	$\left(2\right)$	1	4	3)	
(d)	(1	2	3	4	(1	2	3	4	
	$\begin{pmatrix} 1 \end{pmatrix}$	3	2	4)	(3	4	1	2)	
	•				•				

- 3. Let S_3 be the symmetric group on three letters, C_6 the group $(\mathbb{Z}/6\mathbb{Z}, [0]_6, +)$.
 - (a) Show that both C_6 and S_3 have six elements.
 - (b) Find two elements a, b of S_3 which do not commute (that is, such that $ab \neq ba$.
 - (c) Using (b) explain why the groups S_3 and C_6 cannot be "the same group".
 - (d) For the *a*, *b* you found calculate $c = (ab)(ba)^{-1} = aba^{-1}b^{-1}$. This is called the "commutator" of *a*, *b*.
 - (e) Let $f: S_3 \to C_6$ be a group homomorphism (that is: $f(id) = [0]_6$, $f(\sigma\tau) = f(\sigma) + f(\tau)$, $f(\sigma^{-1}) = -f(\sigma)$ for all $\sigma, \tau \in S_3$). Show that $f(c) = [0]_6$. *Hint*: Calculate f(c) in terms of the (unknown) f(a), f(b) and simplify your answer using properties of modular addition.
 - (f) Conclude that any group homomorphism $f: S_3 \to C_6$ is not injective, in particular not an isomorphism.

Orders

- 4. (General cancellation property) Let *G* be a group and let $x, y, z \in G$. Show that if xz = yz then x = y and that if zx = zy then also x = y.
- 5. For each $\sigma \in S_3$ find the smallest *k* such that $\sigma^k = id$. This is called the *order* of σ .

Supplementary problems

- A. Direct products and sums.
 - (a) Let G, H be groups. On $G \times H$ define a binary operation by $(g_1, h_1) \cdot (g_2, h_2) \stackrel{\text{def}}{=} (g_1g_2, h_1h_2)$. Together with the identity element (e_G, e_H) show that this makes $G \times H$ into a group called the *direct product* of G, H.
 - (b) More generally, let $\{G_i\}_{i \in I}$ be a family of groups. Let $\prod_{i \in I} G_i$ be the set of all functions f with domain I such that $f(i) \in G_i$ for all i. Give $\prod_{i \in I} G_i$ the structure of a group. This is the *direct product* of the family. When the G_i are all isomorphic to a fixed group G this is usually denoted G^I .
 - (c) Let $\sum_{i \in I} G_i \subset \prod_i G_i$ be the set of *finitely supported* functions, that is those functions f such that $f(i) = e_{G_i}$ for all but finitely many i. Show that $\sum_{i \in I} G_i$ is a group, called the *direct* sum of the groups G_i . When the G_i are all isomorphic to a fixed group G this is sometimes denoted $G^{\oplus I}$.
- B. Distinguishing direct products and sums.
 - (a) Show that C₂^{⊕ℕ} is not isomorphic to C₂^ℕ, and that Z^{⊕ℕ} is not isomorphic to Z^ℕ. *Hint:* In both cases show that the direct sum is countable and that the direct product has the cardinality of the continuum.
 - (b) Show that every element of $\sum_{n=1}^{\infty} C_n$ has finite order.
 - (c) Show that $\prod_{n=1}^{\infty} C_n$ has elements of infinite order.