Math 342 Problem set 10 (due 22/11/011)

Working with polynomials

- 1. For each pair of polynomials f, g below, find $q, r \in \mathbb{Q}[x]$ such that g = qf + r and deg $r < \deg f$.
 - (a) g = 2x + 4, f = 2. (b) g = 2x + 4, f = x + 1.

 - (c) g = 2x + 4, $f = x^2 2$ (d) $g = x^6 + 5x^4 + 3x^3 + x + 1$, $f = x^2 + 2$.
- 2. Same as problem 1, but reduce all coefficients modulu 5. Thus think of f,g as elements of $\mathbb{F}_5[x]$ and find q, r in $\mathbb{F}_5[x]$.
- 3. Simplify the products $(x+1) \cdot (x+1) \in \mathbb{F}_2[x]$, $(x+1)(x+1)(x+1) \in \mathbb{F}_3[x]$. Explain why $x^2 + 1$ is not irreducible in $\mathbb{F}_2[x]$ (even though it is irreducible in $\mathbb{Z}[x]$!)
- 4. The following transmissions were made using CRC-4. Decide whether the recieved message should be accepted. Write an identity of polynomials justifying your conclusion.
 - (a) (0000000,0000)
 - (b) (00000100,0000)
 - (c) (00101100,0000)
 - (d) (10110111,1011)
- 5. Over the field \mathbb{F}_5 we would like to encode the following three-digit messages by Reed-Solomon coding, evaluating at the 4 non-zero points $\{1,2,3,4\}$ modulu 5. For each message write the associated polynomial and encoded 4-digit transmission.
 - (a) $\underline{m} = (1,2,3) \mod 5$ (here $m(x) = 1 + 2x + 3x^2 \mod 5$).
 - (b) $m = (0, 0, 0) \mod 5$.
 - (c) $\underline{m} = (1, 4, 2) \mod 5$.
 - (d) $m = (2, 0, 2) \mod 5$.
- 6. Working over the field \mathbb{F}_5 , the sender has enocded two-digit messages by evaluating the associated linear polynomial at the 4 non-zero points in the same order as above. You receive the transmissions below, which may contained corrupted bits. For each 4-tuple find the linear polynomial which passes through as many points as possible.
 - (a) $\underline{v}' = (1, 2, 3, 3)$.
 - (b) v' = (4, 1, 3, 0).
 - (c) $\overline{v'} = (2, 4, 3, 1)$.

The general linear group

7. Let F be a field. Define $GL_n(F) = \{g \in M_n(F) \mid \det(g) \neq 0\}$. Using the formulas $\det(gh) =$ det(g) det(h), $det(I_n) = 1$ and the fact that if $det(g) \neq 0$ then g is invertible, show that $GL_n(F)$ contains the identity matrix and is closed under multiplication and under taking of inverses.

(continued on the reverse)

- 8. Consider the vector space $V = \mathbb{F}_p^2$ over \mathbb{F}_p .
 - (a) How many elements are there in V? In a 1-dimensional subspace of V?
 - (b) How many elements in V are non-zero? If W is a given 1-dimensional subspace, how many elements are there in the complement $V \setminus W$?
 - (c) Let $\underline{w} \in V$ be a non-zero column vector. How many $\underline{v} \in V$ exist so that the 2 × 2 matrix $(\underline{w} \underline{v})$ is invertible?
 - (d) By multiplying the number of choices for \underline{w} by the number of choices for \underline{v} , show that $\operatorname{GL}_2(\mathbb{F}_p)$ has $(p+1)p(p-1)^2$ elements.

Supplementary Problems

- A. (The field of rational functions) Let F be a field.
 - (a) Let Q be the set of all formal expressions ^f/_g with f, g ∈ F[x], g ≠ 0. Define a relation ~ on Q by ^f/_g ~ ^{f'}/_{g'} iff fg' = gf'. Show that ~ is an equivalence relation.
 (b) Let F(x) denote the set Q/~ of equivalence classes in Q under ~. Show that F(x) has the
 - (b) Let F(x) denote the set Q/ ~ of equivalence classes in Q under ~. Show that F(x) has the structure of a field.
 Hint: Define operations by choice of representatives and show that the result is independent.
 - dent of your choices up to equivalence. Show that the map $E[u] \to E(u)$ mapping $f \in E[u]$ to the equivalence class of \hat{f} is an
 - (c) Show that the map $F[x] \to F(x)$ mapping $f \in F[x]$ to the equivalence class of $\frac{f}{1}$ is an injective ring homomorphism. Obtain in particular a ring homomorphism $\iota : F \to F(x)$.
- B. (Universal properties of F[x], F(x)) Let *E* be another field, and let $\varphi \colon F \to E$ be a homomorphism of rings.
 - (a) Show that φ is injective. *Hint*: Assume $x \neq 0$ but $\varphi(x) = 0$ and show that $\varphi(1) = 0$.
 - (b) Now let $\alpha \in E$. Show that there exists a ring homomorphism $\overline{\varphi} \colon F[x] \to E$ such that (i) $\overline{\varphi} \circ \iota = \varphi$ and (ii) $\overline{\varphi}(x) = \alpha$.
 - (c) Show that there is at most one $\bar{\varphi}$ satisfying (i),(ii). *Hint*: By induction on the degree of the polynomial.
 - (d) Assume that α is *transcendental* over F, that is that it is not a zero of any polynomial in F[x]. Show that $\overline{\phi}$ extends uniquely to a field homomorphism $\widetilde{\phi}: F(x) \to E$.
- C. (Degree valuation) For non-zero $f \in F[x]$ set $v_{\infty}(f) = -\deg f$. Also set $v_{\infty}(0) = \infty$.
 - (a) For $\frac{f}{g} \in Q$ set $v_{\infty}\left(\frac{f}{g}\right) = v_{\infty}(f) v_{\infty}(g)$. Show that v_{∞} is constant on equivalence classes, thus descends to a map $v_{\infty} \colon F(x) \to \mathbb{Z} \cup \{\infty\}$.
 - (b) For $r, s \in F(x)$ show that $v_{\infty}(rs) = v_{\infty}(r) + v_{\infty}(s)$ and $v_{\infty}(r+s) \ge \min\{v_{\infty}(r), v_{\infty}(s)\}$ with equality if the two valuations are different (cf. Problem A, Problem Set 4).
 - (c) Fix q > 1 and set $|r|_{\infty} = q^{-\nu_{\infty}(r)}$ for any $r \in F(x)$ $(|0|_{\infty} = 0)$. Show that $|rs|_{\infty} = |r|_{\infty} |s|_{\infty}$, $|r+s|_{\infty} \le |r|_{\infty} + |s|_{\infty}$.

REMARK. When F is a finite field, it is natural to take q equal to the size of F. Then $\mathbb{F}_p(x)$ with the absolute value $|\cdot|_{\infty}$ behaves a lot like \mathbb{Q} with the p-adic absolute value $|\cdot|_p$.

D. $(F[x] \text{ is a Principle Ideal Domain) Let } I \subset F[x] \text{ be an ideal. Show that there exists } f \in F[x]$ such that I = (f), that is $I = \{f \cdot g \mid g \in F[x]\}$.