Math 342 Problem set 10 (due 22/11/011)

Working with polynomials

1. For each pair of polynomials f, g below, find $q, r \in \mathbb{Q}[x]$ such that $g=q f+r$ and $\operatorname{deg} r<\operatorname{deg} f$.
(a) $g=2 x+4, f=2$.
(b) $g=2 x+4, f=x+1$.
(c) $g=2 x+4, f=x^{2}-2$
(d) $g=x^{6}+5 x^{4}+3 x^{3}+x+1, f=x^{2}+2$.
2. Same as problem 1, but reduce all coefficients modulu 5. Thus think of f, g as elements of $\mathbb{F}_{5}[x]$ and find q, r in $\mathbb{F}_{5}[x]$.
3. Simplify the products $(x+1) \cdot(x+1) \in \mathbb{F}_{2}[x],(x+1)(x+1)(x+1) \in \mathbb{F}_{3}[x]$. Explain why $x^{2}+1$ is not irreducible in $\mathbb{F}_{2}[x]$ (even though it is irreducible in $\mathbb{Z}[x]$!)
4. The following transmissions were made using CRC-4. Decide whether the recieved message should be accepted. Write an identity of polynomials justifying your conclusion.
(a) $(00000000,0000)$
(b) $(00000100,0000)$
(c) $(00101100,0000)$
(d) $(10110111,1011)$
5. Over the field \mathbb{F}_{5} we would like to encode the following three-digit messages by Reed-Solomon coding, evaluating at the 4 non-zero points $\{1,2,3,4\}$ modulu 5. For each message write the associated polynomial and encoded 4-digit transmission.
(a) $\underline{m}=(1,2,3) \bmod 5\left(\right.$ here $\left.m(x)=1+2 x+3 x^{2} \bmod 5\right)$.
(b) $\underline{m}=(0,0,0) \bmod 5$.
(c) $\underline{m}=(1,4,2) \bmod 5$.
(d) $\underline{m}=(2,0,2) \bmod 5$.
6. Working over the field \mathbb{F}_{5}, the sender has enocded two-digit messages by evaluating the associated linear polynomial at the 4 non-zero points in the same order as above. You receive the transmissions below, which may contained corrupted bits. For each 4-tuple find the linear polynomial which passes through as many points as possible.
(a) $\underline{v}^{\prime}=(1,2,3,3)$.
(b) $\underline{v}^{\prime}=(4,1,3,0)$.
(c) $\underline{v}^{\prime}=(2,4,3,1)$.

The general linear group

7. Let F be a field. Define $\mathrm{GL}_{n}(F)=\left\{g \in M_{n}(F) \mid \operatorname{det}(g) \neq 0\right\}$. Using the formulas $\operatorname{det}(g h)=$ $\operatorname{det}(g) \operatorname{det}(h), \operatorname{det}\left(I_{n}\right)=1$ and the fact that if $\operatorname{det}(g) \neq 0$ then g is invertible, show that $\mathrm{GL}_{n}(F)$ contains the identity matrix and is closed under multiplication and under taking of inverses.
(continued on the reverse)
8. Consider the vector space $V=\mathbb{F}_{p}^{2}$ over \mathbb{F}_{p}.
(a) How many elements are there in V ? In a 1-dimensional subspace of V ?
(b) How many elements in V are non-zero? If W is a given 1-dimensional subspace, how many elements are there in the complement $V \backslash W$?
(c) Let $\underline{w} \in V$ be a non-zero column vector. How many $\underline{v} \in V$ exist so that the 2×2 matrix $(\underline{w} \underline{v})$ is invertible?
(d) By multiplying the number of choices for \underline{w} by the number of choices for \underline{v}, show that $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ has $(p+1) p(p-1)^{2}$ elements.

Supplementary Problems

A. (The field of rational functions) Let F be a field.
(a) Let Q be the set of all formal expressions $\frac{f}{g}$ with $f, g \in F[x], g \neq 0$. Define a relation \sim on Q by $\frac{f}{g} \sim \frac{f^{\prime}}{g^{\prime}}$ iff $f g^{\prime}=g f^{\prime}$. Show that \sim is an equivalence relation.
(b) Let $F(x)$ denote the set Q / \sim of equivalence classes in Q under \sim. Show that $F(x)$ has the structure of a field.
Hint: Define operations by choice of representatives and show that the result is independent of your choices up to equivalence.
(c) Show that the map $F[x] \rightarrow F(x)$ mapping $f \in F[x]$ to the equivalence class of $\frac{f}{1}$ is an injective ring homomorphism. Obtain in particular a ring homomorphism $t: F \rightarrow F(x)$.
B. (Universal properties of $F[x], F(x)$) Let E be another field, and let $\varphi: F \rightarrow E$ be a homomorphism of rings.
(a) Show that φ is injective.

Hint: Assume $x \neq 0$ but $\varphi(x)=0$ and show that $\varphi(1)=0$.
(b) Now let $\alpha \in E$. Show that there exists a ring homomorphism $\bar{\varphi}: F[x] \rightarrow E$ such that (i) $\bar{\varphi} \circ \imath=\varphi$ and (ii) $\bar{\varphi}(x)=\alpha$.
(c) Show that there is at most one $\bar{\varphi}$ satisfying (i),(ii).

Hint: By induction on the degree of the polynomial.
(d) Assume that α is transcendental over F, that is that it is not a zero of any polynomial in $F[x]$. Show that $\bar{\varphi}$ extends uniquely to a field homomorphism $\tilde{\varphi}: F(x) \rightarrow E$.
C. (Degree valuation) For non-zero $f \in F[x]$ set $v_{\infty}(f)=-\operatorname{deg} f$. Also set $v_{\infty}(0)=\infty$.
(a) For $\frac{f}{g} \in Q$ set $v_{\infty}\left(\frac{f}{g}\right)=v_{\infty}(f)-v_{\infty}(g)$. Show that v_{∞} is constant on equivalence classes, thus descends to a map $v_{\infty}: F(x) \rightarrow \mathbb{Z} \cup\{\infty\}$.
(b) For $r, s \in F(x)$ show that $v_{\infty}(r s)=v_{\infty}(r)+v_{\infty}(s)$ and $v_{\infty}(r+s) \geq \min \left\{v_{\infty}(r), v_{\infty}(s)\right\}$ with equality if the two valuations are different (cf. Problem A, Problem Set 4).
(c) Fix $q>1$ and set $|r|_{\infty}=q^{-v_{\infty}(r)}$ for any $r \in F(x)\left(|0|_{\infty}=0\right)$. Show that $|r s|_{\infty}=|r|_{\infty}|s|_{\infty}$, $|r+s|_{\infty} \leq|r|_{\infty}+|s|_{\infty}$.

REMARK. When F is a finite field, it is natural to take q equal to the size of F. Then $\mathbb{F}_{p}(x)$ with the absolute value $|\cdot|_{\infty}$ behaves a lot like \mathbb{Q} with the p-adic absolute value $|\cdot|_{p}$.
D. $(F[x]$ is a Principle Ideal Domain) Let $I \subset F[x]$ be an ideal. Show that there exists $f \in F[x]$ such that $I=(f)$, that is $I=\{f \cdot g \mid g \in F[x]\}$.

