
Math 342 Problem set 10 (due 22/11/011)

Working with polynomials
1. For each pair of polynomials f ,g below, find q,r ∈Q[x] such that g = q f +r and degr < deg f .

(a) g = 2x+4, f = 2.
(b) g = 2x+4, f = x+1.
(c) g = 2x+4, f = x2−2
(d) g = x6 +5x4 +3x3 + x+1, f = x2 +2.

2. Same as problem 1, but reduce all coefficients modulu 5. Thus think of f ,g as elements of
F5[x] and find q,r in F5[x].

3. Simplify the products (x+1) ·(x+1)∈F2[x], (x+1)(x+1)(x+1)∈F3[x]. Explain why x2 +1
is not irreducible in F2[x] (even though it is irreducible in Z[x]!)

4. The following transmissions were made using CRC-4. Decide whether the recieved message
should be accepted. Write an identity of polynomials justifying your conclusion.
(a) (00000000,0000)
(b) (00000100,0000)
(c) (00101100,0000)
(d) (10110111,1011)

5. Over the field F5 we would like to encode the following three-digit messages by Reed-Solomon
coding, evaluating at the 4 non-zero points {1,2,3,4} modulu 5. For each message write the
associated polynomial and encoded 4-digit transmission.
(a) m = (1,2,3) mod 5 (here m(x) = 1+2x+3x2 mod 5).
(b) m = (0,0,0) mod 5.
(c) m = (1,4,2) mod 5.
(d) m = (2,0,2) mod 5.

6. Working over the field F5, the sender has enocded two-digit messages by evaluating the as-
sociated linear polynomial at the 4 non-zero points in the same order as above. You receive
the transmissions below, which may contained corrupted bits. For each 4-tuple find the linear
polynomial which passes through as many points as possible.
(a) v′ = (1,2,3,3) .
(b) v′ = (4,1,3,0) .
(c) v′ = (2,4,3,1) .

The general linear group
7. Let F be a field. Define GLn(F) = {g ∈Mn(F) | det(g) 6= 0}. Using the formulas det(gh) =

det(g)det(h), det(In) = 1 and the fact that if det(g) 6= 0 then g is invertible, show that GLn(F)
contains the identity matrix and is closed under multiplication and under taking of inverses.

(continued on the reverse)
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8. Consider the vector space V = F2
p over Fp.

(a) How many elements are there in V ? In a 1-dimensional subspace of V ?
(b) How many elements in V are non-zero? If W is a given 1-dimensional subspace, how

many elements are there in the complement V \W?
(c) Let w ∈ V be a non-zero column vector. How many v ∈ V exist so that the 2× 2 matrix

(wv) is invertible?
(d) By multiplying the number of choices for w by the number of choices for v, show that

GL2(Fp) has (p+1)p(p−1)2 elements.

Supplementary Problems
A. (The field of rational functions) Let F be a field.

(a) Let Q be the set of all formal expressions f
g with f ,g ∈ F [x], g 6= 0. Define a relation ∼ on

Q by f
g ∼

f ′
g′ iff f g′ = g f ′. Show that ∼ is an equivalence relation.

(b) Let F(x) denote the set Q/∼ of equivalence classes in Q under∼. Show that F(x) has the
structure of a field.
Hint: Define operations by choice of representatives and show that the result is indepen-
dent of your choices up to equivalence.

(c) Show that the map F [x]→ F(x) mapping f ∈ F [x] to the equivalence class of f
1 is an

injective ring homomorphism. Obtain in particular a ring homomorphism ι : F → F(x).

B. (Universal properties of F [x], F(x)) Let E be another field, and let ϕ : F → E be a homomor-
phism of rings.
(a) Show that ϕ is injective.

Hint: Assume x 6= 0 but ϕ(x) = 0 and show that ϕ(1) = 0.
(b) Now let α ∈ E. Show that there exists a ring homomorphism ϕ̄ : F [x]→ E such that (i)

ϕ̄ ◦ ι = ϕ and (ii) ϕ̄(x) = α .
(c) Show that there is at most one ϕ̄ satisfying (i),(ii).

Hint: By induction on the degree of the polynomial.
(d) Assume that α is transcendental over F , that is that it is not a zero of any polynomial in

F [x]. Show that ϕ̄ extends uniquely to a field homomorphism ϕ̃ : F(x)→ E.

C. (Degree valuation) For non-zero f ∈ F [x] set v∞( f ) =−deg f . Also set v∞(0) = ∞.
(a) For f

g ∈ Q set v∞

(
f
g

)
= v∞( f )− v∞(g). Show that v∞ is constant on equivalence classes,

thus descends to a map v∞ : F(x)→ Z∪{∞}.
(b) For r,s ∈ F(x) show that v∞(rs) = v∞(r)+ v∞(s) and v∞(r + s)≥min{v∞(r),v∞(s)} with

equality if the two valuations are different (cf. Problem A, Problem Set 4).
(c) Fix q > 1 and set |r|

∞
= q−v∞(r) for any r ∈ F(x) (|0|

∞
= 0). Show that |rs|

∞
= |r|

∞
|s|

∞
,

|r + s|
∞
≤ |r|

∞
+ |s|

∞
.

REMARK. When F is a finite field, it is natural to take q equal to the size of F . Then Fp(x)
with the absolute value |·|

∞
behaves a lot like Q with the p-adic absolute value |·|p.

D. (F [x] is a Principle Ideal Domain) Let I ⊂ F [x] be an ideal. Show that there exists f ∈ F [x]
such that I = ( f ), that is I = { f ·g | g ∈ F [x]}.
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