Math 342 Problem set 8 (due 11/3/09)

Rings and vector spaces

- 1. Let *R* be a ring. We define a map $f \colon \mathbb{N} \to R$ inductively by $f(0) = 0_R$ and $f(n+1) = f(n) + 1_R$.
 - (a) Show that $f(1) = 1_R$. Show that f(n+m) = f(n) + f(m) for all $n, m \in \mathbb{N}$. *Hint:* Induction on *m*.
 - (b) Show that f respects multiplication, that is for all $n, m \in \mathbb{N}$, $f(nm) = f(n) \cdot f(m)$. *Hint*: Induction again. The case m = 0 uses a result from class.
 - SUPP Extend *f* to a function $g: \mathbb{Z} \to R$ by setting g(n) = f(n) if $n \in \mathbb{Z}_{\geq 0}$, and g(n) = -f(-n) if $n \in \mathbb{Z}_{\leq 0}$. Show that *g* is a ring homomorphism. *Hint:* Divide into cases.
- *2. Let *E* be a field, and let $F \subset E$ be a *subfield* (*F* contains 0_E , 1_E , and is closed under addition, multiplication, negatives and inverses). Consider the set *E* with the following two operations: addition in *E* and multiplying elements of *E* by elements of *F*. Show that this makes *E* into a vector space over *F*.

Hint: You need to go over the axioms in Definition 79 and deduce them from what you know about *E* due to Definition 58.

Linear algebra

- 3. In each case, check whether the vector is linearly dependent on the other vectors. If it is, exhibit it as a linear combination. If not, prove that this cannot be done.
 - (a) (1,2,3) on $\{(2,4,0), (0,0,1), (0,0,0)\}$ in \mathbb{R}^3 ?
 - (b) (5,7,-2) on $\{(3,2,1),(1,0,0)\}$ in \mathbb{R}^3 .
 - (c) $([5]_{11}, [7]_{11}, [-2]_{11})$ on $\{([3]_{11}, [2]_{11}, [1]_{11}), ([1]_{11}, [0]_{11}, [0]_{11})\}$ in \mathbb{F}^3_{11} (for a prime p, \mathbb{F}_p is another notation for the field $\mathbb{Z}/p\mathbb{Z}$).
 - (d) The polynomial $[5]_{7x} + [1]_{7}$ on $\{[2]_{7x^2} + [1]_{7x}, x^2 + [5]_{7x} + [3]_{7}\}$ in the space of polynomials over \mathbb{F}_{7} .
- *4. Let *F* be a field, *V* a vector space over *F*, and let $B = \{\underline{v}_i\}_{i=1}^n \subset V$ be a linearly independent subset of *V* which spans *V*. Consider the map $f: F^n \to V$ given by $f(x_1, \ldots, x_n) = \sum_{i=1}^n x_i \underline{v}_i$.
 - (a) Show that f is a linear map.
 - (b) Show that *f* is *onto*, that is that the image *f* is the whole of *V*. *Hint*: What is the definition of "span"?
 - (c) Show that f is *injective*, that is that if <u>x</u> ≠ <u>y</u> in Fⁿ then f(<u>x</u>) ≠ f(<u>y</u>) in V.
 Hint: Assume f(<u>x</u>) = f(<u>y</u>), subtract f(<u>y</u>) from both sides, and use the definition of independence to show <u>x</u> = y.
 - (d) Conclude that every n-dimensional vector space over F is isomorphic to F^n .

REMARK 94. This is why the case of F^n is the one most studied.

The Hamming Code (variant)

5. Let $H \in M_{3\times 7}(\mathbb{F}_2)$ be the matrix whose columns are all non-zero vectors in \mathbb{F}_2^3 , that is

(a) Let $a, b, c, d \in \mathbb{F}_2$ be a 4-bit "message" we want to transmit. Show that there exist unique $x, y, z \in \mathbb{F}_2$ so that $H \cdot (x, y, z, a, b, c, d)^T = \underline{0}$. We will trasmit the redundant 7-bit vector instead.

Hint: Need to show both that *x*, *y*, *z* exist and that they are unique. Express the problem as a system of linear equations over \mathbb{F}_2 .

- (b) For each $1 \le i \le 7$, let \underline{e}^i be the standard basis vector of \mathbb{F}_2^7 with 1 at the *i*th co-ordinate. Calculate the seven vectors $H\underline{e}^i$.
- (c) Let $\underline{v}, \underline{v}' \in \mathbb{F}_2^7$ be at Hamming distance 1. Show that there exists *i* so that $\underline{v}' = \underline{v} + \underline{e}^i$.
- (d) Now let's say Alice transmits the 7-bit vector $\underline{v} = (x, y, z, a, b, c, d)^T$ from part (a), through a channel that can change at most one bit in every seven. Denote by \underline{v}' the 7 bits Bob receives, and show that if $\underline{v}' \neq \underline{v}$ then $H\underline{v}' \neq \underline{0}$. Conclude that Bob can detect if a 1-bit error occured.

Hint: Use the fact that $H\underline{v} = \underline{0}$ and your answers to parts (c) and (b).

(e) In fact, if at most one bit error can occur then Bob can *correct* the error. Using the fact that the vectors $H\underline{e}^i$ are all different (see your answer to part (b)), show that knowing only \underline{v}' and that at most one error occured, he can calculate the difference $\underline{e} = \underline{v}' - \underline{v}$ and hence the original vector \underline{v} .

Hint: What are the possibilities for \underline{e} ? For $H\underline{e}$? how do they match up? Don't forget that it's possible that $\underline{v}' = \underline{v}$.

Supplementary problems

- A (Prime fields and finite fields)
 - (a) Let g be the map from 1(c). Show that Ker(g) is an ideal of \mathbb{Z} .
 - (b) Let *E* be a field, and let g: Z → E be the map from problem 1. Show that Ker(g) = (p) where p = 0 or p is prime. *Hint*: If m = ab apply g to both sides.
 - (c) Conclude that every finite field contains a copy of $\mathbb{F}_p \simeq \mathbb{Z}/p\mathbb{Z}$ for a prime *p*.
 - (d) Show that every finite field has p^n elements for some n.

REMARK. It is also true that for every $q = p^n$ there exists a field \mathbb{F}_q of size q, unique up to isomorphism.