Math 342 Problem set 8 (due 11/3/09)

Rings and vector spaces

1. Let R be a ring. We define a map $f: \mathbb{N} \rightarrow R$ inductively by $f(0)=0_{R}$ and $f(n+1)=f(n)+1_{R}$.
(a) Show that $f(1)=1_{R}$. Show that $f(n+m)=f(n)+f(m)$ for all $n, m \in \mathbb{N}$.

Hint: Induction on m.
(b) Show that f respects multiplication, that is for all $n, m \in \mathbb{N}, f(n m)=f(n) \cdot f(m)$. Hint: Induction again. The case $m=0$ uses a result from class.
SUPP Extend f to a function $g: \mathbb{Z} \rightarrow R$ by setting $g(n)=f(n)$ if $n \in \mathbb{Z}_{\geq 0}$, and $g(n)=-f(-n)$ if $n \in \mathbb{Z}_{\leq 0}$. Show that g is a ring homomorphism.
Hint: Divide into cases.
*2. Let E be a field, and let $F \subset E$ be a subfield (F contains $0_{E}, 1_{E}$, and is closed under addition, multiplication, negatives and inverses). Consider the set E with the following two operations: addition in E and multiplying elements of E by elements of F. Show that this makes E into a vector space over F.
Hint: You need to go over the axioms in Definition 79 and deduce them from what you know about E due to Definition 58 .

Linear algebra

3. In each case, check whether the vector is linearly dependent on the other vectors. If it is, exhibit it as a linear combination. If not, prove that this cannot be done.
(a) $(1,2,3)$ on $\{(2,4,0),(0,0,1),(0,0,0)\}$ in \mathbb{R}^{3} ?
(b) $(5,7,-2)$ on $\{(3,2,1),(1,0,0)\}$ in \mathbb{R}^{3}.
(c) $\left([5]_{11},[7]_{11},[-2]_{11}\right)$ on $\left\{\left([3]_{11},[2]_{11},[1]_{11}\right),\left([1]_{11},[0]_{11},[0]_{11}\right)\right\}$ in \mathbb{F}_{11}^{3} (for a prime p, \mathbb{F}_{p} is another notation for the field $\mathbb{Z} / p \mathbb{Z})$.
(d) The polynomial $[5]_{7} x+[1]_{7}$ on $\left\{[2]_{7} x^{2}+[1]_{7} x, x^{2}+[5]_{7} x+[3]_{7}\right\}$ in the space of polynomials over \mathbb{F}_{7}.
*4. Let F be a field, V a vector space over F, and let $B=\left\{\underline{v}_{i}\right\}_{i=1}^{n} \subset V$ be a linearly independent subset of V which spans V. Consider the map $f: F^{n} \rightarrow V$ given by $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \underline{v}_{i}$.
(a) Show that f is a linear map.
(b) Show that f is onto, that is that the image f is the whole of V.

Hint: What is the definition of "span"?
(c) Show that f is injective, that is that if $\underline{x} \neq \underline{y}$ in F^{n} then $f(\underline{x}) \neq f(\underline{y})$ in V.

Hint: Assume $f(\underline{x})=f(\underline{y})$, subtract $f(\underline{y})$ from both sides, and use the definition of independence to show $\underline{x}=\underline{y}$.
(d) Conclude that every n-dimensional vector space over F is isomorphic to F^{n}.

Remark 94. This is why the case of F^{n} is the one most studied.

The Hamming Code (variant)

5. Let $H \in M_{3 \times 7}\left(\mathbb{F}_{2}\right)$ be the matrix whose columns are all non-zero vectors in \mathbb{F}_{2}^{3}, that is

$$
H=\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(a) Let $a, b, c, d \in \mathbb{F}_{2}$ be a 4-bit "message" we want to transmit. Show that there exist unique $x, y, z \in \mathbb{F}_{2}$ so that $H \cdot(x, y, z, a, b, c, d)^{T}=\underline{0}$. We will trasmit the redundant 7 -bit vector instead.
Hint: Need to show both that x, y, z exist and that they are unique. Express the problem as a system of linear equations over \mathbb{F}_{2}.
(b) For each $1 \leq i \leq 7$, let \underline{e}^{i} be the standard basis vector of \mathbb{F}_{2}^{7} with 1 at the i th co-ordinate. Calculate the seven vectors $H e^{i}$.
(c) Let $\underline{v}, \underline{v}^{\prime} \in \mathbb{F}_{2}^{7}$ be at Hamming distance 1. Show that there exists i so that $\underline{v}^{\prime}=\underline{v}+\underline{e}^{i}$.
(d) Now let's say Alice transmits the 7 -bit vector $\underline{v}=(x, y, z, a, b, c, d)^{T}$ from part (a), through a channel that can change at most one bit in every seven. Denote by \underline{v}^{\prime} the 7 bits Bob receives, and show that if $\underline{v}^{\prime} \neq \underline{v}$ then $H \underline{v}^{\prime} \neq \underline{0}$. Conclude that Bob can detect if a 1-bit error occured.
Hint: Use the fact that $H \underline{v}=\underline{0}$ and your answers to parts (c) and (b).
(e) In fact, if at most one bit error can occur then Bob can correct the error. Using the fact that the vectors $H \underline{e}^{i}$ are all different (see your answer to part (b)), show that knowing only \underline{v}^{\prime} and that at most one error occured, he can calculate the difference $\underline{e}=\underline{v}^{\prime}-\underline{v}$ and hence the original vector \underline{v}.
Hint: What are the possibilities for \underline{e} ? For $H \underline{e}$? how do they match up? Don't forget that it's possible that $\underline{v}^{\prime}=\underline{v}$.

Supplementary problems

A (Prime fields and finite fields)
(a) Let g be the map from 1(c). Show that $\operatorname{Ker}(g)$ is an ideal of \mathbb{Z}.
(b) Let E be a field, and let $g: \mathbb{Z} \rightarrow E$ be the map from problem 1 . Show that $\operatorname{Ker}(g)=(p)$ where $p=0$ or p is prime.
Hint: If $m=a b$ apply g to both sides.
(c) Conclude that every finite field contains a copy of $\mathbb{F}_{p} \simeq \mathbb{Z} / p \mathbb{Z}$ for a prime p.
(d) Show that every finite field has p^{n} elements for some n.

REMARK. It is also true that for every $q=p^{n}$ there exists a field \mathbb{F}_{q} of size q, unique up to isomorphism.

