Math 121,	
Lecture 1	

The Construction

Properties of the definite integral

Math 121: Honours Integral Calculus Lecture 6

Lior Silberman

January 11th, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Last time

Math 121, Lecture 1

Lior Silberman

The Construction

Properties o the definite integral • $f: [a, b] \rightarrow \mathbb{R}$ bounded.

•
$$P: a = x_0 < x_1 < \cdots < x_n = b$$
 a paritition.

Spacings
$$\Delta x_i = x_i - x_{i-1}$$
.
Mesh: $\delta(P) = \max{\{\Delta x_i\}_{i=1}^n (\text{longest spacing})}$.

•
$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x), \ M_i = \sup_{x \in [x_{i-1}, x_i]} f(x).$$

Riemann sums
$$L(f; P) = \sum_{i=1}^{n} m_i \Delta x_i$$
,
 $U(f; P) = \sum_{i=1}^{n} M_i \Delta x_i$.

Definition

Say f is integrable on [a, b] and that $\int_a^b f(x) dx = I$ if $I \in \mathbb{R}$ is the unique number so that $L(f; P) \leq I \leq U(f; P)$ for all P.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples

Math 121, Lecture 1

The Construction

Properties of the definite integral

• f constant: $\int_{a}^{b} c dx = c(b-a)$. Dirichlet's function $D(x) = \begin{cases} 1 & x \text{ rational} \\ 0 & x \text{ irrational} \end{cases}$ is not integrable on any interval $(m_i = 0, M_i = 1)$. • What if $f(x) = \begin{cases} D(x) & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} \le x \le 1 \end{cases}$ on [0,1]? • What if $f(x) = \begin{cases} 1 & x = 0 \\ 0 & 0 < x \le 1 \end{cases}$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The choice of partition

Math 121, Lecture 1

Lior Silberman

The Construction

Properties of the definite integral

Theorem

The following are equivalent:

1 *I* is the unique number between the lower and upper sums;

2
$$I = \lim_{\delta(P) \to 0} L(f; P) = \lim_{\delta(P) \to 0} U(f; P);$$

3 The sums for the uniform partition converge to *I*.

Why non-uniform partitions?

Example

 $f(x) = \log x$ on [a, b] (a > 0). The natural partition is $x_i = a \left(\frac{b}{a}\right)^{i/n}$. After complicated calculation (see notes) get

$$\int_{a}^{b} \log dx = (b \log b - b) - (a \log a - a)$$

The interval

Math 121, Lecture 1

Lior Silberman

The Construction

Properties of the definite integral

Theorem

Let f be Riemann integrable on [a, b]. Then f is integrable on any sub-interval.

Theorem

Let f be integrable on [a, b], [b, c]. Then f is integrable on [a, c] and

$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx.$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

Proof.

Concatenate partitions.

The interval

Math 121, Lecture 1

Lior Silberman

If
$$b < a$$
 set $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$. If $a = b$ set the integral to zero.

Properties of the definite integral

Example

Definition

$$f(x) = \begin{cases} 5 & 2 \le x < 3\\ -2 & 3 < x \le 5 \end{cases}$$
 Then
$$\int_{2}^{5} f(x) dx = \int_{2}^{3} f(x) dx + \int_{3}^{5} f(x) dx = 5 \cdot 1 + (-2) \cdot 2 = 1.$$

Example

We showed that $\int_0^b x dx = \frac{b^2}{2}$ (right triangle with both sides of length *b*). Since $\int_0^b = \int_0^a + \int_a^b$ it follows that $\int_a^b x dx = \int_0^b x dx - \int_0^a x dx = \frac{b^2}{2} - \frac{a^2}{2}$.

A D > A P > A B > A B >

ж

The function

Math 121, Lecture 1

Lior Silberman

The Construction

Properties of the definite integral

Theorem

Let f,g be Riemann integrable on [a,b]. Let $A, B \in \mathbb{R}$. Then Af + Bg is integrable on [a,b] and

$$\int_a^b (Af(x) + Bg(x)) dx = A \int_a^b f(x) dx + B \int_a^b g(x) dx.$$

Example

.

$$\int_{a}^{b} (Ax+B) dx = A \int_{a}^{b} x dx + B \int_{a}^{b} 1 dx = A \left(\frac{b^{2}}{2} - \frac{a^{2}}{2} \right) + B(b-a).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The function

Math 121, Lecture 1

Lior Silberman

The Construction

Properties of the definite integral

Theorem

Let f be continous on [a, b]. Then f is integrable on [a, b].

Proof.

Continuity: f does not fluctuate much on small intervals. But this means that if $\delta(P)$ is small then U(f;P) - L(f;P) is small (at most b - a times the maximal fluctuation). It follows that there is at most one real number between all the lower and upper sums.