# Math 121 - Examples of partial fraction expansions 

Lior Silberman, UBC

January 31, 2012
$1 \quad f(x)=\frac{x}{x^{2}-1}$

1. Find poles
(a) Factor denominator: $x^{2}-1=(x-1)(x+1)$.
(b) Identify zeroes: $\pm 1$.
2. Find asymptotics
(a) $f(x) \sim_{1} \frac{1}{(x-1) 2}=\frac{1 / 2}{(x-1)}$
(b) $f(x) \sim_{-1} \frac{-1}{(-2)(x+1)}=\frac{1 / 2}{x+1}$
3. Subtract: $f(x)-\left[\frac{1 / 2}{x-1}+\frac{1 / 2}{x+1}\right]=f(x)-\left[\frac{(x+1)+(x-1)}{2\left(x^{2}-1\right)}\right]=0$.

Conclusion: $\frac{x}{x^{2}-1}=\frac{1 / 2}{x-1}+\frac{1 / 2}{x+1}$.
$2 f(x)=\frac{x}{x^{4}-2 x^{2}+1}$.

1. Find poles
(a) Factor denominator: $x^{4}-2 x^{2}+1=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2}$.
(b) Identify zeroes: $\pm 1$.
2. Find asymptotics
(a) $f(x) \sim_{1} \frac{1}{(x-1)^{2} \cdot 4}=\frac{1 / 4}{(x-1)^{2}}$
(b) $f(x) \sim_{-1} \frac{-1}{(-2)^{2}(x+1)^{2}}=\frac{-1 / 4}{(x+1)^{2}}$
3. Subtract: $f(x)-\left[\frac{1 / 4}{(x-1)^{2}}-\frac{1 / 4}{(x+1)^{2}}\right]=f(x)-\frac{(x+1)^{2}-(x-1)^{2}}{4(x-1)^{2}(x+1)^{2}}=0$.

Conclusion: $\frac{x}{x^{4}-2 x^{2}+1}=\frac{1 / 4}{(x-1)^{2}}-\frac{1 / 4}{(x+1)^{2}}$.
$3 f(x)=\frac{x^{3}}{x^{4}-2 x^{2}+1}$.

1. Find poles
(a) Factor denominator: $x^{4}-2 x^{2}+1=\left(x^{2}-1\right)^{2}=(x-1)^{2}(x+1)^{2}$.
(b) Identify zeroes: $\pm 1$.
2. Find asymptotics
(a) $f(x) \sim_{1} \frac{1^{3}}{(x-1)^{2} \cdot 4}=\frac{1 / 4}{(x-1)^{2}}$
(b) $f(x) \sim_{-1} \frac{(-1)^{3}}{(-2)^{2}(x+1)^{2}}=\frac{-1 / 4}{(x+1)^{2}}$
3. Subtract:
(a) $f(x)-\left[\frac{1 / 4}{(x-1)^{2}}-\frac{1 / 4}{(x+1)^{2}}\right]=\frac{x^{3}}{(x-1)^{2}(x+1)^{2}}-\frac{(x+1)^{2}-(x-1)^{2}}{4(x-1)^{2}(x+1)^{2}}=\frac{x^{3}-x}{(x-1)^{2}(x+1)^{2}}$.
(b) New numerator must have factors corresponding to $(x-1)(x+1)$. Indeed, $x^{3}-x=x(x-1)(x+1)$.
(c) Cancel factors: $f(x)-\left[\frac{1 / 4}{(x-1)^{2}}-\frac{1 / 4}{(x+1)^{2}}\right]=\frac{x}{(x-1)(x+1)}$.
4. New asymptotics (note no new bad points!)
(a) $\frac{x}{x^{2}-1} \sim_{1} \frac{1}{(x-1) 2}=\frac{1 / 2}{(x-1)}$
(b) $\frac{x}{x^{2}-1} \sim_{-1} \frac{-1}{(-2)(x+1)}=\frac{1 / 2}{x+1}$

Conclusion: $\frac{x}{x^{2}-1}=\frac{1 / 2}{x-1}+\frac{1 / 2}{x+1}$ so $\frac{x^{3}}{x^{2}-2 x^{2}+1}=\frac{1 / 4}{(x-1)^{2}}-\frac{1 / 4}{(x+1)^{2}}+\frac{1 / 2}{x-1}+\frac{1 / 2}{x+1}=\frac{1 / 4}{(x-1)^{2}}+\frac{1 / 2}{x-1}-\frac{1 / 4}{(x+1)^{2}}+\frac{1 / 2}{x+1}$.
$4 f(x)=\frac{1}{x^{5}+x^{3}}$.

1. Find poles
(a) Factor denominator: $x^{5}+x^{3}=x^{3}\left(x^{2}+1\right)$.
(b) Identify zeroes: 0 .
2. Find asymptotics
(a) $f(x) \sim_{0} \frac{1}{x^{3} \cdot 1}=\frac{1}{x^{3}}$.
3. Subtract:
(a) $f(x)-\frac{1}{x^{3}}=\frac{x^{2}+1-1}{x^{3}\left(x^{2}+1\right)}=\frac{x^{2}}{x^{3}\left(x^{2}+1\right)}$.
(b) New numerator must have factors corresponding to zero, in this case $x^{2}$.
(c) Cancel factors: $f(x)-\frac{1}{x^{3}}=\frac{1}{x\left(x^{2}+1\right)}$.
4. New asymptotics (note no new bad points!)
(a) $\frac{1}{x\left(x^{2}+1\right)} \sim_{0} \frac{1}{x}$.
5. New subtraction
(a) $\frac{1}{x\left(x^{2}+1\right)}-\frac{1}{x}=\frac{x^{2}+1-1}{x(x+1)^{2}}=\frac{x}{x^{2}+1}$.

Conclusion: $\frac{1}{x^{5}+x^{3}}=\frac{1}{x^{3}}+\frac{1}{x}+\frac{x}{x^{2}+1}$.

