Math 121 – Summary of improper integrals

Lior Silberman, UBC

February 2, 2012

1 Definitions

• For f defined for $x \ge a$ so that $\int_a^T f(x) dx$ makes sense for all x we set (IF THE LIMIT EXISTS)

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = \lim_{T \to \infty} \int_{a}^{T} f(x) \, \mathrm{d}x$$

- Say the integral "converges" if the limit exists, "diverges" if it doesn't.
- The notation on the LHS is shorthand for the value of the limit.
- $\int_{b}^{\infty} f(x) dx$ converges iff $\int_{a}^{\infty} f(x) dx$ converges and in that case $\int_{a}^{\infty} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{\infty} f(x) dx$ ("area is additive").
- Intutition: All that matters is the asymptotic behaviour near infinity.
- For *f* defined for $a < x \le b$ we set

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \lim_{T \to x} \int_{T}^{b} f(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) \, \mathrm{d}x$$

- Again same terminology for "convergence", "divergence".
- Again if f bounded near b then value of b not important only behaviour near a is.
- If $\int_a^b f(x) dx$ has several "bad points", break up into sub-intervals on with one bad endpoint each.

$$- \int_0^\infty \frac{e^{-x}}{\sqrt{x|x-2|}} \, \mathrm{d}x = \int_0^1 \frac{e^{-x}}{\sqrt{x|x-2|}} \, \mathrm{d}x + \int_1^2 \frac{e^{-x}}{\sqrt{x|x-2|}} \, \mathrm{d}x + \int_2^3 \frac{e^{-x}}{\sqrt{x|x-2|}} \, \mathrm{d}x + \int_3^\infty \frac{e^{-x}}{\sqrt{x|x-2|}} \, \mathrm{d}x.$$

• Limit laws apply, so if the integrals involving f, g on some interval converge so does the integral involving $\alpha f + \beta g$.

f positive 2

• Then $\int_a^T f(x) dx$ is increasing when the interval increases. As $T \to \infty$ it is either bounded (and the limit exists) or unbounded (and the limit is ∞).

- Key examples:

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{\sqrt{x}} = \lim_{T \to \infty} \int_{1}^{T} \frac{\mathrm{d}x}{\sqrt{x}} = \lim_{T \to \infty} \left[2\sqrt{x} \right]_{1}^{T} = \lim_{T \to \infty} \left(2\sqrt{T} - 2 \right) = \infty$$
$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{2}} = \lim_{T \to \infty} \int_{1}^{T} \frac{\mathrm{d}x}{x^{2}} = \lim_{T \to \infty} \left[-\frac{1}{x} \right]_{1}^{T} = \lim_{T \to \infty} \left(1 - \frac{1}{T} \right) = 1.$$

* In general

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{T \to \infty} \left[\frac{T^{1-p}}{1-p} - \frac{1}{1-p} \right] = \begin{cases} \frac{1}{p-1} & p > 1\\ \infty & p \le 1 \end{cases}$$

- At a finite interval

$$\int_0^1 \frac{\mathrm{d}x}{x^p} = \lim_{T \to 0} \left[\frac{1}{1-p} - \frac{T^{1-p}}{1-p} \right] = \begin{cases} \frac{1}{1-p} & p < 1\\ \infty & p \ge 1 \end{cases}.$$

- Comparison
 - For f positive, all that matters is the upper bound, so: if $0 \le f(x) \le g(x)$ for all x then
 - * If an improper integral for g on some interval converges the same holds for f (smaller area is also finite).
 - * If an improper integral for f on some interval diverges the same holds for g (larger area is also infinite).
 - Key situation: suppose for x large f, g are positive and there are constants 0 < A < B so that $A \le \frac{f(x)}{g(x)} \le B$ for x large. Then $\int_a^{\infty} f(x) dx$ and $\int_a^{\infty} g(x) dx$ either both converge or both diverge.
 - Examples for deciding convergence:
 - 1. $\frac{1}{\sqrt{x^3-5}} \sim_{\infty} x^{-3/2}$ (asymptotics as $x \to \infty$); since $\int_{10}^{\infty} \frac{dx}{x^{3/2}}$ converges so does $\int_{10}^{\infty} \frac{dx}{\sqrt{x^3-5}}$.
 - 2. Decide if $\int_0^1 \frac{e^x dx}{\sqrt{x}}$ converges. Only bad point is at x = 0; there we have $\frac{e^x}{\sqrt{x}} \sim_0 \frac{1}{\sqrt{x}}$. Since $\int_0^1 \frac{dx}{\sqrt{x}}$ converges so does $\int_0^1 \frac{e^x}{\sqrt{x}} dx$.
 - 3. $\int_{1/2}^{1} \frac{dx}{\sin(\pi x)}$. The integrand blows up as $x \to 1$. In what way?
 - * Method 1: change variables to y = 1 x, so we are looking at $\int_{y=1/2}^{y=0} \frac{-dy}{\sin(\pi y)} = \int_0^{1/2} \frac{dy}{\sin(\pi y)}$. Now $\sin(\pi y) \sim_0 \pi y$ so $\frac{1}{\sin(\pi y)} \sim_0 \frac{1}{\pi y}$ and the integral diverges.
 - * Method 2: (same idea, different presentation) write $\sin(\pi x) = -\sin(\pi x \pi) = -\sin(\pi(x-1))$. As $x \to 1$, x - 1 is small so $\sin(\pi(x-1)) \sim \pi(x-1)$. It follows that

$$\frac{1}{\sin(\pi x)} \sim_1 -\frac{1}{x-1} = \frac{1}{1-x}$$

Now $\int_{1/2}^{1} \frac{dx}{1-x}$ diverges since the integrand blows at at rate $\frac{1}{\text{distance to bad point}}$.

3 Absolute convergence

- Suppose $\int_a^{\infty} |f(x)| dx$ converges. Then g(x) = f(x) + |f(x)| satisfies $0 \le g(x) \le 2|f(x)|$ so $\int_a^{\infty} (f(x) + |f(x)|) dx$ converges. Also, $\int_a^{\infty} (-|f(x)|) dx$ converges. Adding we see that $\int_a^{\infty} f(x) dx$.
 - If $\int_a^{\infty} |f(x)| dx$ converges we say $\int_a^{\infty} f(x) dx$ converges *absolutely*.
 - If $\int_{a}^{\infty} f(x) dx$ converges but $\int_{a}^{\infty} |f(x)| dx = \infty$ we say $\int_{a}^{\infty} f(x) dx$ converges *conditionally*.
- Key examples:
 - $\int_{5}^{\infty} \frac{\cos x}{x^2} dx$ converges absolutely since $\left| \frac{\cos x}{x^2} \right| \le \frac{1}{x^2}$.
 - $\int_5^\infty \frac{\cos x}{x} dx$ converges conditionally.