Math 121 - Summary of improper integrals

Lior Silberman, UBC

February 2, 2012

1 Definitions

- For f defined for $x \geq a$ so that $\int_{a}^{T} f(x) \mathrm{d} x$ makes sense for all x we set (IF THE LIMIT EXISTS)

$$
\int_{a}^{\infty} f(x) \mathrm{d} x=\lim _{T \rightarrow \infty} \int_{a}^{T} f(x) \mathrm{d} x
$$

- Say the integral "converges" if the limit exists, "diverges" if it doesn't.
- The notation on the LHS is shorthand for the value of the limit.
- $\int_{b}^{\infty} f(x) \mathrm{d} x$ converges iff $\int_{a}^{\infty} f(x) \mathrm{d} x$ converges and in that case $\int_{a}^{\infty} f(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{b}^{\infty} f(x) \mathrm{d} x$ ("area is additive").
- Intutition: All that matters is the asymptotic behaviour near infinity.
- For f defined for $a<x \leq b$ we set

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{T \rightarrow x} \int_{T}^{b} f(x) \mathrm{d} x=\lim _{\varepsilon \rightarrow 0} \int_{a+\varepsilon}^{b} f(x) \mathrm{d} x
$$

- Again same terminology for "convergence", "divergence".
- Again if f bounded near b then value of b not important - only behaviour near a is.
- If $\int_{a}^{b} f(x) \mathrm{d} x$ has several "bad points", break up into sub-intervals on with one bad endpoint each.

$$
-\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x|x-2|}} \mathrm{d} x=\int_{0}^{1} \frac{e^{-x}}{\sqrt{x|x-2|}} \mathrm{d} x+\int_{1}^{2} \frac{e^{-x}}{\sqrt{x|x-2|}} \mathrm{d} x+\int_{2}^{3} \frac{e^{-x}}{\sqrt{x|x-2|}} \mathrm{d} x+\int_{3}^{\infty} \frac{e^{-x}}{\sqrt{x|x-2|}} \mathrm{d} x .
$$

- Limit laws apply, so if the integrals involving f, g on some interval converge so does the integral involving $\alpha f+\beta g$.

$2 f$ positive

- Then $\int_{a}^{T} f(x) \mathrm{d} x$ is increasing when the interval increases. As $T \rightarrow \infty$ it is either bounded (and the limit exists) or unbounded (and the limit is ∞).
- Key examples:

$$
\begin{gathered}
\int_{1}^{\infty} \frac{\mathrm{d} x}{\sqrt{x}}=\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{\mathrm{~d} x}{\sqrt{x}}=\lim _{T \rightarrow \infty}[2 \sqrt{x}]_{1}^{T}=\lim _{T \rightarrow \infty}(2 \sqrt{T}-2)=\infty \\
\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2}}=\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{\mathrm{~d} x}{x^{2}}=\lim _{T \rightarrow \infty}\left[-\frac{1}{x}\right]_{1}^{T}=\lim _{T \rightarrow \infty}\left(1-\frac{1}{T}\right)=1
\end{gathered}
$$

* In general

$$
\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{p}}=\lim _{T \rightarrow \infty}\left[\frac{T^{1-p}}{1-p}-\frac{1}{1-p}\right]= \begin{cases}\frac{1}{p-1} & p>1 \\ \infty & p \leq 1\end{cases}
$$

- At a finite interval

$$
\int_{0}^{1} \frac{\mathrm{~d} x}{x^{p}}=\lim _{T \rightarrow 0}\left[\frac{1}{1-p}-\frac{T^{1-p}}{1-p}\right]= \begin{cases}\frac{1}{1-p} & p<1 \\ \infty & p \geq 1\end{cases}
$$

- Comparison
- For f positive, all that matters is the upper bound, so: if $0 \leq f(x) \leq g(x)$ for all x then
* If an improper integral for g on some interval converges the same holds for f (smaller area is also finite).
* If an improper integral for f on some interval diverges the same holds for g (larger area is also infinite).
- Key situation: suppose for x large f, g are positive and there are constants $0<A<B$ so that $A \leq \frac{f(x)}{g(x)} \leq B$ for x large. Then $\int_{a}^{\infty} f(x) \mathrm{d} x$ and $\int_{a}^{\infty} g(x) \mathrm{d} x$ either both converge or both diverge.
- Examples for deciding convergence:

1. $\frac{1}{\sqrt{x^{3}-5}} \sim_{\infty} x^{-3 / 2}$ (asymptotics as $x \rightarrow \infty$); since $\int_{10}^{\infty} \frac{\mathrm{d} x}{x^{3 / 2}}$ converges so does $\int_{10}^{\infty} \frac{\mathrm{d} x}{\sqrt{x^{3}-5}}$.
2. Decide if $\int_{0}^{1} \frac{e^{x} \mathrm{~d} x}{\sqrt{x}}$ converges. Only bad point is at $x=0$; there we have $\frac{e^{x}}{\sqrt{x}} \sim_{0} \frac{1}{\sqrt{x}}$. Since $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x}}$ converges so does $\int_{0}^{1} \frac{e^{x}}{\sqrt{x}} \mathrm{~d} x$.
3. $\int_{1 / 2}^{1} \frac{\mathrm{~d} x}{\sin (\pi x)}$. The integrand blows up as $x \rightarrow 1$. In what way?

* Method 1: change variables to $y=1-x$, so we are looking at $\int_{y=1 / 2}^{y=0} \frac{-\mathrm{d} y}{\sin (\pi y)}=\int_{0}^{1 / 2} \frac{\mathrm{~d} y}{\sin (\pi y)}$. Now $\sin (\pi y) \sim_{0} \pi y$ so $\frac{1}{\sin (\pi y)} \sim_{0} \frac{1}{\pi y}$ and the integral diverges.
* Method 2: (same idea, different presentation) write $\sin (\pi x)=-\sin (\pi x-\pi)=-\sin (\pi(x-1))$. As $x \rightarrow 1, x-1$ is small so $\sin (\pi(x-1)) \sim_{1} \pi(x-1)$. It follows that

$$
\frac{1}{\sin (\pi x)} \sim_{1}-\frac{1}{x-1}=\frac{1}{1-x} .
$$

Now $\int_{1 / 2}^{1} \frac{d x}{1-x}$ diverges since the integrand blows at at rate $\frac{1}{\text { distance to bad point }}$.

3 Absolute convergence

- Suppose $\int_{a}^{\infty}|f(x)| \mathrm{d} x$ converges. Then $g(x)=f(x)+|f(x)|$ satisfies $0 \leq g(x) \leq 2|f(x)|$ so $\int_{a}^{\infty}(f(x)+|f(x)|) \mathrm{d} x$ converges. Also, $\int_{a}^{\infty}(-|f(x)|) \mathrm{d} x$ converges. Adding we see that $\int_{a}^{\infty} f(x) \mathrm{d} x$.
- If $\int_{a}^{\infty}|f(x)| \mathrm{d} x$ converges we say $\int_{a}^{\infty} f(x) \mathrm{d} x$ converges absolutely.
- If $\int_{a}^{\infty} f(x) \mathrm{d} x$ converges but $\int_{a}^{\infty}|f(x)| \mathrm{d} x=\infty$ we say $\int_{a}^{\infty} f(x) \mathrm{d} x$ converges conditionally.
- Key examples:
$-\int_{5}^{\infty} \frac{\cos x}{x^{2}} \mathrm{~d} x$ converges absolutely since $\left|\frac{\cos x}{x^{2}}\right| \leq \frac{1}{x^{2}}$.
- $\int_{5}^{\infty} \frac{\cos x}{x} \mathrm{~d} x$ converges conditionally.

