Math 121: Single-variable Calculus II Lecture Notes

Lior Silberman

These are rough notes for the spring 2012 course. Problem sets and solutions were posted on an internal website.

Contents

Introduction (Lecture 1, 4/1/12) 5
0.1. Administrivia 5
0.2. Course plan (subject to revision) 5
0.3. Motivating problem: the area of the disc 5
Chapter 1. The Riemann integral 7
1.1. Two preliminary tools: The Σ notation and induction (Lectures 2,3, 6-7/1/12) 7
1.2. Examples 10
1.3. Definition of the integral 13
1.4. The Fundamental Theorem of Calculus (Lecture 7, 16/1/2012) 15
1.5. Numerical integration 18
1.6. Improper integrals 18
1.7. Appendix: The Real numbers 18
Chapter 2. Techniques of integration 23
2.1. Integration by substitution (Lecture 9, 18/1/2012) 23
2.2. Integration by parts (Lecture 10, 20/1/2012) 23
2.3. Rational fractions: the partial fractions expansion (Lectures 11-13, 23-25/1/12) 25
2.4. Substitution II (27-30/1/2012) 28
2.5. Improper integrals and comparison (31/1/2012-3/2/2012) 28
Chapter 3. Applications 30
3.1. Volume 30
3.2. Arc length (10/2/2012) 32
3.3. Surface area (PS6) 33
3.4. Mass and density $(13 / 2 / 2012)$ 33
3.5. Centre-of-mass (14-15/2/2012) 34
3.6. Integrating differential equations (17/2/2012) 36
3.7. Continuous Probability (27-29/2) 37
Chapter 4. Parametric curves 40
Chapter 5. Sequences and Series 41
5.1. Sequences and Convergence 41
5.2. Series 48
5.3. Absolute convergence 49
5.4. Power series and Taylor series 51
Chapter 6. Examples from Physics 58
6.1. van der Waals equation 58
6.2. Planck's Law 58

Bibliography 59
Bibliography 60

Introduction (Lecture 1, 4/1/12)

```
Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~`lior
Office: Math Building 229B
Phone: 604-827-3031
```


0.1. Administrivia

Syllabus posted online, summarized on slides. Key points:

- Problem sets will be posted on the course website. Solutions will be posted on a secure system (email explanation will be sent).
- Depending on time, the grader may only mark selected problems. Solutions will be complete.
- Absolutely essential to
- Read ahead according to the posted schedule. Lectures after the first will assume that you had done your reading.
- Do homework.
- Office hours
- Course website is important. Contains notes, problem sets, announcements, reading assignments etc.

0.2. Course plan (subject to revision)

Two tracks: foundations and technique. Topics:

- The Riemann integral
- The problem of area; examples.
- Construction of the integral, basic properties.
- Techniques of integration
- Applications
- Parametric curves and polar co-ordinates.
- The real numbers
- Sequences and convergence.
- Series.
- Power series and Taylor expansion.

0.3. Motivating problem: the area of the disc

- What is the area of the disc of radius R ? It is πR^{2}.
- How do we know?
- Cut it up in pieces and add up the areas.
- Approximate slices by triangles
- Total bases approximates circumference
- Can also get upper bound.
- Archimedes: Method of "divide and sum".
- Newton: Calculus.
- Weierstraß: rigorous bounds.

CHAPTER 1

The Riemann integral

1.1. Two preliminary tools: The Σ notation and induction (Lectures 2,3, 6-7/1/12)

- Plan:
(1) Sequences and sums
(a) Sequences and parametrization
(b) Sums
(2) Proof by Induction
- Goals: Sequences
- Be able to parametrize sequences given the first few elements
- Be able to do change-of-variable
- Convert \cdots notation to parametrization and vice versa
- Goals: sums
- Be able to convert between \cdots notation and Σ
- Goals: induction
- Prove statements about sums using induction.
- Hook: You have won the lottery; choose between $\$ 12.5 \mathrm{M}$ today and $\$ 1 \mathrm{M} /$ year for 25 years.

1.1.1. Sequences.

DEFINITION 1. A sequence (properly, an infinite sequence) is a function whose domain is the natural numbers.

Notation 2. The value at $i \in \mathbb{N}$ (called the " i th element" of the sequence) is by the subscript i.

Math 121: In-class worksheet for lecture 2

Example 3. Some explicit sequences:
(1) Constant Sequences $0,0,0,0,0, \cdots$ and $1,1,1,1,1, \cdots$
(2) The natural numbers \mathbb{N} : $0,1,2,3,4, \cdots$
(3) The positive integers $\mathbb{Z}_{\geq 1} 1,2,3,4, \cdots$
(4) An arithmetic progression 5,9,13, 17,21,25, \ldots
(5) A geometric progression $1,2,4,8,16,32,64 \cdots$
(6) The prime numbers $2,3,5,7,11,13, \cdots$

EXERCISE 4. Parametrize the sequences above.
(1) $a_{i}=0$ for $i \geq 0$ and $a_{i}=1$ for $i \geq 0$.
(2) $b_{j}=j$ for $j \geq 0$.
(3)
(4)
(5)
(6)

Exercise 5. Parametrize the sequences
(1) $\sqrt{13}, \sqrt{20-\frac{1}{\pi}}, \sqrt{27-\frac{1}{\pi^{2}}}, \sqrt{34-\frac{1}{\pi^{3}}}, \cdots$
(2) $\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}, \cdots$

Example 6. Simple sums
(1) $5+6+7+8+9=\sum_{i=5}^{9} i=\sum_{j=0}^{4}(5+j)=\sum_{j=1}^{5}(j+4)$
(2) $5+6+7+8+\cdots+150=\sum_{i=5}^{150} i$
(3) $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=$
(4) $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\cdots$ (n terms)

- Key idea: parametrizing a sequence;

1.1.2. Sums.

EXAMPLE 7. $1=1,1+2=3,1+2+3=6,1+2+3+4=10,1+2+3+4+5=15$. $1+2+3+\cdots+n=$?

Notation 8 . Let $\left\{a_{i}\right\}_{i=0}^{\infty}$ be a sequence. Let m, M be integers. We write

$$
\sum_{i=m}^{M} a_{i}
$$

for the sum $a_{m}+a_{m+1}+\cdots+a_{M}$ of the elements on the sequence in positions between m, M.

- If $m=M$ there is only one summand, by convention the sum is equal to a_{m}.
- If $m>M$ the sum is empty, by convention it is zero.

LEMMA 9. $\sum_{i=k}^{l} a_{i}+\sum_{i=l+1}^{m} a_{i}=\sum_{i=k}^{m} a_{i} ; c \sum_{i=m}^{M} a_{i}=\sum_{i=m}^{M} c a_{i}$.

1.1.3. Induction.

LEMMA 10. For all natural numbers $n \geq 0, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=0}^{n-1} q^{i}=\frac{q^{n}-1}{q-1}$.
Proof. Both are true for $n=0$. Consider $\sum_{i=1}^{n+1} i=\sum_{i=1}^{n} i+(n+1)$. For the second, Problem set 1.

- Practical way the proof works.
- Statement about sets of integers.

Example 11. Present value of discrete income stream (see example problem set I)
Proposition 12. Let $x \in \mathbb{R}$ satisfy $x \geq-1$. Then for all $n \in \mathbb{N}$ we have $(1+x)^{n} \geq 1+n x$.
Proof. For $n=0$ both sides are equal to 1 . Now assume that

$$
(1+x)^{n} \geq 1+n x
$$

We may then multiply both sides by $1+x \geq 0$ to get:

$$
\begin{aligned}
(1+x)^{n+1} & \geq(1+n x)(1+x) \\
& =1+n x+x+n x^{2} \\
& =1+(n+1) x+n x^{2} \\
& \geq 1+(n+1) x
\end{aligned}
$$

since $n \geq 0$ and $x^{2} \geq 0$.

1.2. Examples

1.2.1. The area of a right triangle. (Lecture $4,10 / 1 / 2011$).

Problem 13. Let $a, b>0$. Let R be the triangle with vertices $(0,0),(a, 0),(a, b)$. What is its area?

Four steps:
(1) Subdivision: Partition $[0, a]$ into n subintervals, $\left[\frac{i-1}{n} a, \frac{i}{n} a\right]$ of length $\Delta x=\frac{a}{n}$ each. To each associate the strip $\left\{\frac{i-1}{n} \leq x \leq \frac{i}{n} a\right\}$.
(2) Approximation: The triangle intersects the i th strip in a trapezoidal region, containing the rectangle $\left[\frac{i-1}{n} a, \frac{i}{n} a\right] \times\left[0, \frac{i-1}{n} b\right]$ and contained in $\left[\frac{i-1}{n} a, \frac{i}{n} a\right] \times\left[0, \frac{i}{n} b\right]$.
(3) Sum: Summing the contribution from each strip, the area of the triangle lies between

$$
\sum_{i=1}^{n} \Delta x \cdot \frac{i-1}{n} b \leq \text { Area } \leq \sum_{i=1}^{n} \Delta x \cdot \frac{i}{n} b
$$

Now the LHS is

$$
\frac{a b}{n^{2}} \sum_{i=1}^{n}(i-1)=\frac{a b}{n^{2}} \sum_{i=0}^{n-1} i=\frac{a b}{n^{2}} \cdot \frac{n(n-1)}{2}=\frac{a b}{2}\left(1-\frac{1}{n}\right)
$$

where the first inequality is by shifting the index by 1 , and the second by the formula from Lemma 10. Similarly, the RHS is

$$
\frac{a b}{n^{2}} \sum_{i=1}^{n} i=\frac{a b}{2}\left(1+\frac{1}{n}\right) .
$$

(4) Limit: It follows that

$$
-\frac{a b}{2 n} \leq \text { Area }-\frac{a b}{2} \leq \frac{a b}{2 n} .
$$

Now letting $n \rightarrow \infty$ we can see that we can make the difference as close to zero as we please, so it must be exactly zero.

Lemma 14 (Epsilon of room principle). Let A, B be real numbers. Assume that for all $\varepsilon>0$ (or even for arbitrarily small ε) we can show that, $-\varepsilon \leq A-B \leq \varepsilon$. Then $A=B$.

1.2.2. The area under the graph of e^{x}.

Problem 15. Let $a<b$. Let R be the region of the plane bounded by the x-axis, the lines $y=a, y=b$ and the graph of the function $f(x)=e^{x}$. What is the area of R ?

Since $f(x)=e^{x}$ is monotone increasing, R contains the rectangle with base $[a, b]$ and side $\left[0, e^{a}\right]$ and is contained in the rectangle with base $[a, b]$ and side $\left[0, e^{b}\right]$. It follows that

$$
(b-a) e^{a} \leq \operatorname{Area}(R) \leq(b-a) e^{b}
$$

More generally, divide the interval into n equal subintervals, of the form $I_{i}=[a+i h, a+(i+1) h]$ where $h=\frac{b-a}{n}$. Let R_{i} be the region bounded by I_{i}, the lines $y=a+i h, y=a+(i+1) h$ and the graph of $f(x)$. Then the same reasoning shows

$$
h e^{a+i h} \leq \operatorname{Area}\left(R_{i}\right) \leq h e^{a+(i+1) h}
$$

Since $\operatorname{Area}(R)=\sum_{0=1}^{n-1} \operatorname{Area}\left(R_{i}\right)$,

$$
\sum_{i=0}^{n-1} h e^{a+i h} \leq \operatorname{Area}(R) \leq \sum_{i=0}^{n-1} h e^{a+(i+1) h} .
$$

Taking common factors we find:

$$
h e^{a} \sum_{i=0}^{n-1} e^{i h} \leq \operatorname{Area}(R) \leq h e^{a} e^{h} \sum_{i=0}^{n-1} e^{i h}
$$

We now apply the formula

$$
\sum_{i=0}^{n-1} q^{i}=\frac{q^{n}-1}{q-1}
$$

valid for all $q \neq 1$, to see:

$$
h e^{a} \frac{e^{n h}-1}{e^{h}-1} \leq \operatorname{Area}(R) \leq h e^{a} e^{h} \frac{e^{n h}-1}{e^{h}-1} .
$$

Noting that $e^{a}\left(e^{n h}-1\right)=e^{a+\frac{b-a}{n} n}-e^{a}=e^{b}-e^{a}$ we rewrite this as:

$$
\frac{h}{e^{h}-1} \leq \frac{\operatorname{Area}(R)}{e^{b}-e^{a}} \leq \frac{h}{e^{h}-1} e^{h}
$$

Finally,

$$
\lim _{h \rightarrow 0} e^{h}=e^{0}=1 \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=f^{\prime}(0)=1
$$

Thus, given $\varepsilon>0$ choose there is H_{0} so that if $0<h<H_{0}$ then $\frac{h}{e^{h}-1} \geq 1-\varepsilon$ and $\frac{h}{e^{h}-1} e^{h} \leq 1+\varepsilon$. Since n is arbitrary we may take $n>\frac{a-b}{H_{0}}$ to conclude

$$
1-\varepsilon \leq \frac{\operatorname{Area}(R)}{e^{b}-e^{a}} \leq 1+\varepsilon
$$

By Lemma $14 \frac{\operatorname{Area}(R)}{e^{b}-e^{a}}=1$ so $\operatorname{Area}(R)=e^{b}-e^{a}$.

1.2.3. The area under the graph of $\log ^{x}$.

Problem 16. Let $0<a<b$. Let R be the region of the plane bounded by the x-axis, the lines $y=a, y=b$ and the graph of the function $f(x)=\log x$. What is the area of R ?

Given $n \geq 1$ let $q=\sqrt[n]{b / a}>1$ and divide the interval $I=[a, b]$ into the n intervals $I_{i}=$ $\left[a q^{i}, a q^{i+1}\right]$. Let R_{i} be the region bounded by I_{i}, the lines $y=a q^{i}, y=a q^{i+1}$ and the graph of $f(x)$. Then the same reasoning again shows

$$
\left|I_{i}\right| \log \left(a q^{i}\right) \leq \operatorname{Area}\left(R_{i}\right) \leq\left|I_{i}\right| \log \left(a q^{i+1}\right)
$$

We rewrite this as

$$
a q^{i}(q-1)[\log a+i \log q] \leq \operatorname{Area}\left(R_{i}\right) \leq a q^{i}(q-1)[\log a+(i+1) \log q]
$$

Let

$$
\begin{aligned}
& A=A(n)=\sum_{i=0}^{n-1} a q^{i}(q-1) \log a \\
& B=B(n)=\sum_{i=0}^{n-1} a q^{i}(q-1) i \log q \\
& C=C(n)=\sum_{i=0}^{n-1} a q^{i}(q-1) \log q
\end{aligned}
$$

Then summing gives:

$$
A+B \leq \operatorname{Area}(R) \leq A+B+C
$$

We now calculate.

$$
\begin{aligned}
A & =a(q-1) \log a \sum_{i=0}^{n-1} q^{i} \\
& =a(q-1) \log a \frac{q^{n}-1}{q-1} \\
& =\log a \cdot a\left(\frac{b}{a}-1\right) \\
& =(b-a) \log a
\end{aligned}
$$

Similarly,

$$
C=(b-a) \log q .
$$

Finally,

$$
\begin{aligned}
B= & a(q-1) \log q \sum_{i=0}^{n-1} i q^{i} \\
= & a(q-1) \log q\left[q \frac{d}{d q} \frac{q^{n}-1}{q-1}\right] \\
= & a(q-1) \log q\left[\frac{n q^{n}}{q-1}-\frac{q\left(q^{n}-1\right)}{(q-1)^{2}}\right] \\
= & a(q-1) \frac{1}{n} \log \frac{b}{a} \frac{n(b / a)}{q-1}-a \frac{q\left(\frac{b}{a}-1\right) \log q}{q-1} \\
= & b \log \frac{b}{a}-(b-a) \frac{q \log q-0}{q-1} \\
\underset{q \rightarrow 1}{\longrightarrow} & b \log \frac{b}{a}-(b-a)[\log q+1]_{q=1} \\
& =b \log \frac{b}{a}-(b-a)
\end{aligned}
$$

It follows that, for any $\varepsilon>0$,

$$
(b-a) \log a+b \log \frac{b}{a}-(b-a)-\varepsilon \leq \operatorname{Area}(R) \leq(b-a) \log a+b \log \frac{b}{a}-(b-a)+\varepsilon,
$$

that is

$$
\operatorname{Area}(R)=(b \log b-b)-(a \log a-a)
$$

1.3. Definition of the integral

1.3.1. Construction (Lecture 5, 11/1/2012). Let f be a function defined and bounded on a closed interval $[a, b]$.

Definition 17. A partition P of $[a, b]$ is a finite sequence $a=x_{0}<x_{1}<\cdots<x_{n}=b$. We say the partition has n parts, that the i th part has length $\Delta x_{i}=x_{i}-x_{i-1}$ and that the mesh of the partition is $\delta(P)=\max \left\{\Delta x_{i} \mid 1 \leq i \leq n\right\}$.

EXAMPLE 18. The trivial partition $P: a=x_{0}<x_{1}=b$. The uniform partition $x_{i}=a+\frac{i}{n}(b-a)$.

DEFINITION 19. Given f and P set $m_{i}=m_{i}(f ; P)=\inf \left\{f(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}, M_{i}=M_{i}(f ; P)=$ $\sup \left\{f(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}$ (these exist since f is bounded!) and define the lower and upper Riemann sums by

$$
\begin{aligned}
L(f ; P) & =\sum_{i=1}^{n} m_{i} \Delta x_{i} . \\
U(f ; P) & =\sum_{i=1}^{n} M_{i} \Delta x_{i} .
\end{aligned}
$$

Example 20. Let f be constant, that is $f(x)=c$ for all x. Then $m_{i}=M_{i}=c$ for all subintervals, and since $\sum_{i=1}^{n} \Delta x_{i}=b-a$ we have $L(f ; P)=U(f ; P)=c(b-a)$ for all partitions P.

DEFINITION 21. Suppose that there is a unique real number I such that for every partition P of a, b, we have $L(f ; P) \leq I \leq U(f ; P)$. We then say that f is integrable on $[a, b]$, say that I is the definite integral of f on $[a, b]$ and write

$$
I=\int_{a}^{b} f(x) d x
$$

1.3.2. Examples and counterexamples (Lecture 5, 11/1/2012).

Example 22. We have seen that $\int_{a}^{b} c d x=c(b-a)$.
On the other hand
Example 23. Let $D(x)=\left\{\begin{array}{ll}1 & x \text { rational } \\ 0 & x \text { irrational }\end{array}\right.$ on $[0,1]$. Then $m_{i}=0, M_{i}=1$ on every interval (D takes the values 0,1 on every interval).

More sophisticated:
EXAMPLE 24. $f(x)=\left\{\begin{array}{ll}D(x) & 0 \leq x \leq \frac{1}{2} \\ 1 & \frac{1}{2} \leq x \leq 1\end{array}\right.$, not integrable.
$g(x)=\left\{\begin{array}{ll}1 & x=0 \\ 0 & 0<x \leq 1\end{array}\right.$ which is integrable.

1.3.3. Basic Properties (Lecture 6, 13/1/2012).

PROPOSITION 25 (Linearity). Let f, g be integrable on $[a, b]$ and let $\alpha, \beta \in \mathbb{R}$. Then $\alpha f+\beta g$ is integrable and $\int_{a}^{b}(\alpha f+\beta g) d x=\alpha \int_{a}^{b} f d x+\beta \int_{a}^{b} g d x$.

Proof. Assume first $A, B \geq 0$ and let P be a partition so that $I(f)-\varepsilon \leq L(f ; P) \leq I(f) \leq$ $U(f ; P) \leq I(f)+\varepsilon$ and also $I(g)-\varepsilon \leq L(g ; P) \leq I(g) \leq U(g ; P) \leq I(g)+\varepsilon$. Then

$$
\begin{aligned}
& U(A f+B g ; P) \leq A \cdot U(f ; P)+B \cdot U(g ; P) \leq A \cdot I(f)+B \cdot I(f)+(A+B) \varepsilon \\
& L(A f+B g ; P) \geq A \cdot L(f ; P)+B \cdot L(g ; P) \geq A \cdot I(f)+B \cdot I(f)-(A+B) \varepsilon .
\end{aligned}
$$

It follows that $A \cdot I(f)+B \cdot I(g)$ is the unique number between the lower and upper sums.
It remains to consider the case of $-f$, which is done in Problem Set 2.
Lemma 26. Let f be integrable on $[a, b]$. If $f \geq 0$ then $\int_{a}^{b} f(x) d x \geq 0$. In particular if $f(x) \geq$ $g(x)$ on $[a, b]$ then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$.

Proof. In the first claim every Riemann sum is non-negative. For the second consider $h(x)=$ $f(x)-g(x)$.

Proposition 27. Let f be integrable on $[a, b]$. Then f is integrable on every sub-interval.
PROOF. Let $a \leq a^{\prime}<b^{\prime} \leq b$. If $P: a^{\prime}=x_{0}<\cdots<x_{n}=b^{\prime}$ is a partition of $\left[a^{\prime}, b^{\prime}\right]$ then $a, x_{0}, \ldots, x_{n}, b$ is a partition of $[a, b]$ with two extra intervals. It follows that $U\left(f ; P^{\prime}\right)-L\left(f ; P^{\prime}\right) \leq$ $U(f ; P)-L(f ; P)$.

Proposition 28. Let $a<b<c$ and let f be integrable on $[a, b]$ and $[b, c]$. Then f is integrable on $[a, c]$ and

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x .
$$

Proof. Write $I_{1}=\int_{a}^{b} f(x) d x, I_{2}=\int_{b}^{c} f(x) d x, I=I_{1}+I_{2}$. Let P_{1}, P_{2} be partitions of $[a, b],[b, c]$ respectively. Let P be their concatenation. Then $U(f ; P)=U\left(f ; P_{1}\right)+U\left(f ; P_{2}\right)$ and similarly for lower sums by concatenation of finite sums. Choosing P_{i} so that

$$
I_{i}-\varepsilon \leq L\left(f ; P_{i}\right) \leq I_{i} \leq U\left(f ; P_{i}\right) \leq I_{i}+\varepsilon .
$$

Adding the two inequalities we have

$$
I_{1}+I_{2}-2 \varepsilon \leq L(f ; P) \leq I_{1}+I_{2} \leq U(f ; P) \leq I_{1}+I_{2}+2 \varepsilon
$$

Taking $\varepsilon \rightarrow 0$ we are done.
EXAMPLE 29. Let $f(x)=\left\{\begin{array}{ll}2 & 0 \leq x<1 \\ 3 & 1<x \leq 2\end{array}\right.$. Then $\int_{0}^{2} f(x) d x=\int_{0}^{1} 2 d x+\int_{1}^{2} 3 d x=5$.
DEFINITION 30. Let $a<b$ and let f be Riemann integrable on $[a, b]$. We then set $\int_{b}^{a} f(x) d x \stackrel{\text { def }}{=}$ $-\int_{a}^{b} f(x) d x$. We also set $\int_{a}^{a} f(x) d x=0$ for all f.

COROLLARY 31. $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$ holds as long as f is integrable on the intervals between a, b and b, c.

THEOREM 32. Let f be continuous on $[a, b]$. Then f is integrable there.
Proof. To be added later.

1.4. The Fundamental Theorem of Calculus (Lecture 7, 16/1/2012)

Theorem 33. Let $a<b$ and let f be defined and integrable on $[a, b]$. For $x \in[a, b]$ set $F(x)=$ $\int_{a}^{x} f(t) d t$. Then:
(1) $F(x)$ is continuous on $[a, b]$.
(2) If f is continuous at $x_{0} \in[a, b]$ then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Corollary 34. Let f be continuous on $[a, b]$ and let $G(x)$ be a function such that $G^{\prime}=f$ on $[a, b]$. Let F be as in the Theorem. Then $F(x)=G(x)-G(a)$. In particular, $\int_{a}^{b} f(t) d t=$ $G(b)-G(a)$.

Proof. Consider the function $F(x)-G(x)$ where F is as in the Theorem. It is differentiable, and $(F-G)^{\prime}(x)=F^{\prime}(x)-G^{\prime}(x)=f(x)-f(x)=0$. It follows that $F-G$ is constant. In other words, for all x we have

$$
F(x)-G(x)=F(a)-G(a)=-G(a)
$$

since $F(a)=0$. It follows that

$$
F(x)=G(x)-G(a) .
$$

Example 35. Note that if $G(x)=e^{x}$ the $\frac{d G}{d x}=e^{x}$, while if $G(x)=x \log x-x$ then $G^{\prime}(x)=\log x$.
Notation 36. For a continuous function f we write $\int f(x) d x$ for a general function F so that $F^{\prime}=f$. Such a function exists by the Fundamental theorem of calculus. More specifically, if F a single such function then $\int f(x) d x=F+C$ for an arbitrary constant C, since if two functions have the same derivative they differ by a constant.

Math 121: In-class worksheet for lecture 8 (17/1/2012)
ExErcise 37. Find anti-derivatives
(1) $\int\left(x^{3}+5 x^{2}+\sin x\right) d x=$
(2) $\int e^{5 x} d x=$
(3) $\int x e^{x^{2}} d x=$
(4) $\int \sqrt{x+5}=$

Exercise 38. Find:
(1) Let $F(x)=\int_{x^{2}}^{\cos x}\left(e^{e^{t}}-\tan t\right) d t$. Find $F^{\prime}(x)=$
(2) (2010 final) Let $G(x)=\frac{d}{d x}\left[x^{2} \int_{0}^{x^{2}} \frac{\sin u}{u} d u\right]-2 x \int_{0}^{x^{2}} \frac{\sin u}{u} d u$. Find $G\left(\sqrt{\frac{\pi}{2}}\right)$

ExERCISE 39. For which $a<b$ is $\int_{a}^{b}\left(4 x-x^{2}\right) d x$ largest?

1.5. Numerical integration

The midpoint rule is considered in problem set 7 .

1.6. Improper integrals

1.6.1. Open interval.

Problem 40. Define $f(x)$ on $[0,1]$ by $f(x)=\left\{\begin{array}{ll}x^{-1 / 2} & x \neq 0 \\ 0 & x=0 .\end{array}\right.$. Then f is not Riemann integrable on $[0,1]$, but at least formally we have $\int f(x) d x=2 \sqrt{x}+C$ so we ought to have $\int_{0}^{1} f(x) d x=$ 2.

Assume that f is only defined on the half-open interval ($a, b]$, and assume that f is Riemann integrable on every closed interval $[a+\varepsilon, b]$ where $\varepsilon>0$. Suppose that $\lim _{y \rightarrow a} \int_{y}^{b} f(x) d x$ exists. In that case we say that the improper integral $\int_{a}^{b} f(x) d x$ exists and set

$$
\int_{a}^{b} f(x) d x=\lim _{y \rightarrow a} \int_{y}^{b} f(x) d x
$$

1.7. Appendix: The Real numbers

1.7.1. Elementary properties of fields.

DEFINITION 41. An field is a quintuple $(F,+, \cdot, 0,1)$ satisfying:
(1) Language: F is a set, $+: F \times F \rightarrow F$ ("addition") and $\cdot: F \times F \rightarrow F$ ("multiplication") are binary operations; $0,1 \in F$ are distinct elements ("zero", "one").
(2) Field axioms
(a) Addition: For all $x, y, z \in F$ we have:

- $(x+y)+z=x+(y+z)$ ("associative law")
- $x+0=x$ ("zero")
- There is $x^{\prime} \in F$ such that $x+x^{\prime}=0$ ("negation")
- $x+y=y+x$ ("commutative law")
(b) Multiplication: For all $x, y, z \in F$ we have:
- $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ ("associative law")
- $x \cdot 1=x$ ("identity")
- If $x \neq 0$ there is y such that $x \cdot y=1$ ("inverse")
- $x \cdot y=y \cdot x$ ("commutative law")
(c) Distributive law: $x \cdot(y+z)=x \cdot y+x \cdot z$.

DEFINITION 42. An ordered field is a sextuple $(F,+, \cdot, 0,1,<)$ where:
(1) $(F,+, \cdot, 0,1)$ is a field.
(2) Order: $<$ is a binary relation ("less than"), and for all $x, y, z \in F$

- If $x<y$ and $y<z$ then $x<z$ ("transitivity").
- Exactly one of $x<y, x=y, y<x$ holds ("trichotomy").
(3) Compatibility with field operations: For all $x, y, z \in F$
- If $x<y$ then $x+z<y+z$.
- If $x<y$ and $z>0$ then $x \cdot z<y \cdot z$.

Example 43. $(\mathbb{Q},+, \cdot, 0,1,<),(\mathbb{R},+, \cdot, 0,1,<)$
Lemma 44. Let F be a field, and let $a, b, c \in F$ with $a \neq 0$. Then the equation $a x+b=c$ has the unique solution $x=a^{\prime}\left(c+b^{\prime}\right)$, where a^{\prime} is such that $a a^{\prime}=a^{\prime} a=1$ and b^{\prime} is such that $b+b^{\prime}=b^{\prime}+b=0$..

Proof. If $a x+b=c$ then $a x=a x+0=a x+\left(b+b^{\prime}\right)=(a x+b)+b^{\prime}=c+b^{\prime}$. It follows that $x=1 x=\left(a^{\prime} a\right) x=a^{\prime}(a x)=a^{\prime}\left(c+b^{\prime}\right)$. Conversely, if $a \cdot a^{-1}=1$ and $b+b^{\prime}=0$ then $a \cdot\left(a^{-1}\left(b^{\prime}+\right.\right.$ $c))+b=\left(a \cdot a^{-1}\right)\left(b^{\prime}+c\right)+b=1 \cdot\left(b^{\prime}+c\right)+b=\left(b^{\prime}+c\right)+b=c+\left(b^{\prime}+b\right)=c+0=0$.

Corollary 45. For all $a \in F$:
(1) The equation $1 x+a=$ a has a unique solution; it follows that zero is unique.
(2) If $a \neq 0$, the equation $a x=a$ has the unique solution; it follows that the identity is unique.
(3) The equation $a+x=0$ has a unique solution; we denote it $-a$.
(4) if $a \neq 0$, the equation $a x=1$ has a unique solution, to be denoted a^{-1}.

Lemma 46. Let F be a field. Then:
(1) For all $x \in F$, we have $x \cdot 0=0$.
(2) For all $x \in F$, we have $x \cdot(-1)=-x$.

Proof.

(1) We have $0=0+0$ so by the zero and distributive laws $x \cdot 0=x \cdot(0+0)=x \cdot 0+x \cdot 0$. There is y such that $x \cdot 0+y=0$ so adding y to both sides we get

$$
0=x \cdot 0+y=(x \cdot 0+x \cdot 0)+y=x \cdot 0+(x \cdot 0+y)=x \cdot 0+0=x \cdot 0 .
$$

(2) $x+\cdot(-x)=0=x \cdot 0=x \cdot(1+(-1))=x \cdot 1+x \cdot(-1)$.

PROPOSITION 47. (Generalized associative law)
PROPOSITION 48. (Generalized commutative law)
Definition 49. (Powers) Let $a \in F$. Set $a^{0}=1$ and for a natural number n set $a^{n+1}=a^{n} \cdot a$. If $a \neq 0$ then for a negative integer n set $a^{n} \stackrel{\text { def }}{=}\left(a^{-1}\right)^{-n}$.

Proposition 50. (Power laws) For all $a, b \in F$ and $n, m \in \mathbb{N}$ we have

$$
\begin{aligned}
a^{n} \cdot a^{m} & =a^{n+m} \\
\left(a^{n}\right)^{m} & =a^{n m} \\
a^{n} b^{n} & =(a b)^{n} .
\end{aligned}
$$

If a, b are non-zero then these laws hold for all $n, m \in \mathbb{Z}$.

1.7.2. The order.

Lemma 51. Let F be an ordered field and let $x \in F$ be non-zero. Then exactly one of $x,-x$ is positive.

Proof. If $x>0$ then $x+(-x)>0+(-x)$. If $x<0$ then $x+(-x)<0+(-x)$.
COROLLARY 52. For all $x \in F$ we have $x^{2} \geq 0$ with equality iff $x=0$.

Proof. If $x>0$ then $x \cdot x>0 \cdot x=0$. If $x=0$ then $x^{2}=0$. If $x<0$ then $-x>0$ so $x^{2}=$ $(-1)(-1) x \cdot x=(-x)^{2}>0$.

Corollary 53. $1>0$.
Proof. $1=1^{2}$.
DEFINITION 54. If $x \in F$ the absolute value of x is the element of F given by $|x|= \begin{cases}x & x>0 \\ 0 & x=0 \\ -x & x<0\end{cases}$
Lemma 55. (Norm) For all $x, y \in F$:
(1) $|x| \geq 0$ and $|x|=0$ iff $x=0$.
(2) (Triangle inequality) $|x+y| \leq|x|+|y|,|x-y| \geq|x|-|y|$.
(3) $|x y|=|x||y|$.

Proof. Divide into cases.
1.7.3. Completeness. The following formalizes our idea that there are "no holes" in the real number line.

Axiom 56 (Completeness of \mathbb{R}). Let A, B be non-empty sets of real numbers such that:
(1) For every $a \in A, b \in B$ we have $a \leq b$.
(2) For every $\varepsilon>0$ there are $a \in A, b \in B$ with $b-a \leq \varepsilon$.

Then there is a real number L such that $a \leq L \leq b$ for all $a \in A, b \in B$.
LEMMA 57. The number L in the axiom is unique.
Proof. Let A, B be as in the axiom, and let L, L^{\prime} satisfy the conclusion. Given $\varepsilon>0$ let $a \in A$, $b \in B$ satisfy $b \leq a+\varepsilon$. Then $L, L^{\prime} \in[a, a+\varepsilon]$ so $\left|L-L^{\prime}\right| \leq \varepsilon$.

Lower and upper bounds.
Definition 58. Let F be an ordered field and let $A \subset F$ be non-empty. Call $M \in F$ an upper bound for A if for all $x \in A$ we have $x \leq M$. Call $m \in F$ a lower bound for A if for all $x \in A$ we have $x \geq m$.

Call A bounded above if it has an upper bound, bounded below if it has a lower bound, bounded if both hold, and unbounded if it is not bounded.

Lemma 59. A non-empty $A \subset \mathbb{R}$ is bounded iff there is $M \in \mathbb{R}$ such that for all $x \in A,|x| \leq M$.
Notation 60. Let $a<b$ be real numbers. We write

$$
\begin{array}{rlr}
(a, b) & =\{x \in \mathbb{R} \mid a<x<b\} \\
{[a, b)} & =\{x \in \mathbb{R} \mid a \leq x<b\} \\
(a, b] & =\{x \in \mathbb{R} \mid a<x \leq b\} \\
{[a, b]} & =\{x \in \mathbb{R} \mid a \leq x \leq b\} & \text { ("open interval") } \\
\text { ("closed interval") }
\end{array}
$$

and also

$$
\begin{aligned}
(a, \infty) & =\{x \in \mathbb{R} \mid a<x\} & & \text { ("open ray") } \\
{[a, \infty) } & =\{x \in \mathbb{R} \mid a \leq x\} & & \text { ("closed ray") } \\
(-\infty, b) & =\{x \in \mathbb{R} \mid x<b\} & & \text { ("open ray") } \\
(-\infty, b] & =\{x \in \mathbb{R} \mid x \leq b\} & & \text { ("closed ray") }
\end{aligned}
$$

Example 61. [0, 1] is bounded. $(-\infty, 1)$ is bounded above while $(1, \infty)$ is not bounded above but bounded below.

Lemma 62. A non-empty $A \subset \mathbb{R}$ is bounded iff it is contained in an interval.
REmark 63. Note that it does not matter if the interval is open or closed. Why?
EXAMPLE 64. Formulate a condition for one-sided boundedness using rays.
The least upper bound property. Fix a non-empty set $A \subset \mathbb{R}$ which is bounded above.
LEMMA 65. Let $M<M^{\prime}$ be two real numbers. If M is an upper bound for A then so is M^{\prime}. The set $\{M \in \mathbb{R} \mid M$ is an upper bound for $A\}$ is bounded below.

Proof. Exercise.
DEfinition 66. Say that $M \in \mathbb{R}$ is a least upper bound of A (l.u.b. for short) if
(1) M is an upper bound on A.
(2) For every upper bound $M^{\prime}, M^{\prime} \geq M$.

Lemma 67. If A has a least upper bound then it has exactly one. In that case we write $\sup A$ (the "supremum" of A) for its least upper bound.

Lemma 68. If $M \in A$ is an upper bound for A then A is the least upper bound of A. In that case we call M the maximum of A and write $M=\max A$.

THEOREM 69. There exists $x \in \mathbb{R}$ such that $x^{2}=2$.
1.7.4. Induction. Call $I \subset \mathbb{R}$ inductive if $0 \in I$ and if whenever $x \in I$ we also have $x+1 \in I$.

EXAMPLE 70. \mathbb{R} is inductive; $\mathbb{R}_{\geq 0}$ is inductive. $\mathbb{R}_{\geq 1}$ is not (does not contain zero), and neither is $\{0,1\}$.

PROPOSITION 71. (Archimedean property) Every inductive set is not bounded above. Equivalently, if $I \subset \mathbb{R}$ is inductive and $M \in \mathbb{R}$ then there is $n \in I$ such that $n>M$.

DEFINITION 72. $\mathbb{N}=\bigcap\{I \subset \mathbb{R} \mid I$ inductive $\} \subset \mathbb{R}$.
Proposition 73. \mathbb{N} is inductive.
Corollary 74. (Proof by induction) Let $A \subset \mathbb{N}$ be inductive. Then $A=\mathbb{N}$.
Proof. $\mathbb{N} \subset A$ holds be definition.
Corollary 75. (Archimedean property) Let $x \in \mathbb{R}$. Then there is $n \in \mathbb{N}$ such that $n>x$. It also follows that if $\varepsilon>0$ then there is $n \in \mathbb{N}$ such that $\frac{1}{n}>\varepsilon$.

The following is not part of the material:

THEOREM 76. (Strong induction) Let $A \subset \mathbb{N}$ have the property that for all $n \in \mathbb{N}$.
Lemma 77. (Discreteness) There is no integer bsatisfying $0<b<1$.
Corollary 78. For any integer n there is no integer a satisfying $n<a<n+1$.
Theorem 79. \mathbb{N} is closed under addition and multiplication: if $x, y \in \mathbb{N}$ then so are $x+y$ and $x \cdot y$.

CHAPTER 2

Techniques of integration

Basic idea: laws for derivatives induce corresponding laws for anti-derivatives.

2.1. Integration by substitution (Lecture 9, 18/1/2012)

- Chain rule: $\frac{d}{d x} f(g(x))=\frac{d}{d u} f(u) \upharpoonright_{u=g(x)} \cdot \frac{d g}{d x}$.
- So: $\int f^{\prime}(g(x)) g(x) d x=f(g(x))+C$.
- Useful way to think about this: try to break up integrand into a function $f(u)$ and a derivative $\frac{d u}{d x} d x$.
EXAMPLE 80. $\int \cos ^{2} x \mathrm{~d} x$.
- Idea: half-angle formula says $\cos (2 x)=2 \cos ^{2} x-1$ so $\cos ^{2} x=\frac{1}{2}(1+\cos (2 x))$, and

$$
\begin{aligned}
\int \cos ^{2} x \mathrm{~d} x & =\frac{1}{2} \int 1 \mathrm{~d} x+\frac{1}{2} \int \cos (2 x) \mathrm{d} x \\
& =\frac{x}{2}+\frac{1}{4} \int \cos (2 x) \mathrm{d}(2 x) \\
& =\frac{x}{2}+\frac{1}{4} \sin (2 x)
\end{aligned}
$$

2.2. Integration by parts (Lecture 10, 20/1/2012)

- Product rule: $\frac{d}{d x}(f g)=f \frac{d g}{d x}+\frac{d f}{d x} g$.
- So: $\int f^{\prime} g d x=f g-\int f g^{\prime} d x$.
- In words: if we are integrating a product we can replace one factor by the integral and the other factor by its derivative at the cost of a minus sign and a factor $f g$.
- Useful if the passage from f^{\prime} (known) to f is not hard, while going from g to g^{\prime} simplifies the problem.
- Definite integral:

$$
\int_{a}^{b} f^{\prime} g d x=[f g]_{x=a}^{x=b}-\int_{a}^{b} f g^{\prime} d x
$$

where $[F]_{x=a}^{x=b} \stackrel{\text { def }}{=} F(b)-F(a)$ for any function F.

Math 121: In-class worksheet for lecture 10

ExErcise 81. Find anti-derivatives
(1) $\int x e^{x} d x=$
(2) $\int x^{2} e^{x}=$
(3) $I_{n}=\int x^{n} e^{x} d x$ in terms of I_{n-1},
(4) $\int \cos ^{2} x d x$.
(5) $\int \arcsin x d x$

ExErcise 82. Find:
(1) $\int \frac{1}{5-x} d x=$
(2) $\int \frac{1}{1+x^{2}} d x=$
(3) $\int \frac{x}{1+x^{2}} d x=$
(4) $\int \frac{1}{1-x^{2}} d x=$

Example 83. $\int \log x \mathrm{~d} x=\int 1 \cdot \log x \mathrm{~d} x=x \log x-\int x \cdot \frac{1}{x} d x=x \log x-x+C$.

2.3. Rational fractions: the partial fractions expansion (Lectures 11-13, 23-25/1/12)

2.3.1. Lecture 11: examples from end of last worksheet.

Example 84. Basic examples for this lecture:
(1) $\int \frac{d x}{5-x}=\log |x-5|+C$.
(2) $\int \frac{\mathrm{d} x}{1+x^{2}}=\arctan x+C$
(3) $\int \frac{x}{1+x^{2}} \mathrm{~d} x$: note that if $u=1+x^{2}$ then $\mathrm{d} u=2 x \mathrm{~d} x$. Changing variables this way we have $\int \frac{x \mathrm{~d} x}{1+x^{2}}=\frac{1}{2} \int \frac{\mathrm{~d} u}{u}=\frac{1}{2} \log |u|=\frac{1}{2} \log \left(1+x^{2}\right)$.
(4) $\int \frac{\mathrm{d} x}{1+x+x^{2}}$. Not so obvious what to do. Idea: complete the square - rewrite $x^{2}+x+1=$ $\left(x+\frac{1}{2}\right)^{2}+1-\frac{1}{4}=\frac{3}{4}+\left(x+\frac{1}{2}\right)^{2}$. We now have the idea of working in terms of the variable $u=x+\frac{1}{2}$ (i.e. shifting the axis). Then $\int \frac{\mathrm{d} x}{1+x+x^{2}}=\int \frac{\mathrm{d} u}{\frac{3}{4}+u^{2}}$. This is similar to 2 but not quite. We can get there by taking a common factor of $\frac{3}{4}$ to get:

$$
\int \frac{\mathrm{d} u}{\frac{3}{4}+u^{2}}=\frac{4}{3} \int \frac{d u}{1+\frac{4}{3} u^{2}}=\frac{4}{3} \int \frac{d u}{1+\left(\frac{2 u}{\sqrt{3}}\right)^{2}}
$$

The final idea is to rescale the variable - change to $v=\frac{2 u}{\sqrt{3}}$.
REMARK 85. On completing the square.
Example 86. $\int \frac{\mathrm{d} x}{1-x^{2}}$. Trick: $\frac{1}{1-x^{2}}=\frac{1}{2}\left[\frac{1}{1-x}+\frac{1}{1+x}\right]$. Conclude that

$$
\int \frac{\mathrm{d} x}{1-x^{2}}=\frac{1}{2}[-\log |1-x|+\log |1+x|]=\frac{1}{2} \log \left|\frac{1+x}{1-x}\right| .
$$

This can actually be discovered systematically:

- Plot $\frac{1}{1-x^{2}}$. Note the "bad points" $x= \pm 1$ which seem to appear in the formula above.
- Near $x=1, \frac{1}{1-x^{2}}=\frac{1}{1-x} \frac{1}{1+x}$ behaves roughly like $\frac{1}{2(1-x)}$. In other words, when x is close to $1 \frac{1}{1-x^{2}}$ blows up like $\frac{1}{2 \cdot(\text { distance to } 1)}$.
- Subtract $\frac{1}{1-x^{2}}-\frac{1 / 2}{1-x}$ get $\frac{1 / 2}{1+x}$.

REMARK 87. Note the idea of asymptotics: we ask not just where $\frac{1}{1-x^{2}}$ blows up, but how fast it blows up there.

Example 88. $\frac{1}{x^{3}-x}$.
(1) Factor denominator: $x^{3}-x=x(x-1)(x+1)$.
(2) Bad points: $0,1,-1$.
(3) Asymptotics:
(a) Near $x=0 \frac{1}{x(x-1)(x+1)} \approx-\frac{1}{x}$.
(b) Near $x=1, \frac{1}{x(x-1)(x+1)} \approx \frac{1}{2(x-1)}$
(c) Near $x=-1, \frac{1}{x(x-1)(x+1)} \approx-\frac{1}{2(x+1)}$.
(4) Try this out:

$$
\begin{aligned}
-\frac{1}{x}+\frac{1}{2(x-1)}-\frac{1}{2(x+1)} & =\frac{-2\left(x^{2}-1\right)+x(x+1)-x(x-1)}{2 x(x+1)(x-1)} \\
& =\frac{2-2 x^{2}+2 x^{2}+x-x}{2\left(x^{3}-x\right)} \\
& =\frac{1}{x^{3}-x} .
\end{aligned}
$$

QUESTION 89. What about $\frac{1}{x^{3}-1}$?
(1) Factor denominator: $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$.
(2) Bad point: 1.
(3) Asymptotics: $\frac{1}{(x-1)\left(x^{2}+x+1\right)} \sim \frac{1}{3(x-1)}$.
(4) Subtract: $\frac{1}{x^{3}-1}-\frac{1}{3(x-1)}=\frac{3-\left(x^{2}+x+1\right)}{3(x-1)\left(x^{2}+x+1\right)}=-\frac{x^{2}+x-2}{3(x-1)\left(x^{2}+x+1\right)}$. Note that $x^{2}+x-2$ has a root at $x=1$ (generalization in the next lecture). Cancel factor of $x-1$ we are left with:

$$
\frac{1}{x^{3}-1}=\frac{1}{3(x-1)}-\frac{x+2}{3\left(x^{2}+x+1\right)} .
$$

Example 90. $\int \frac{\mathrm{d} x}{x^{3}-1}=\frac{1}{3} \int \frac{\mathrm{~d} x}{x-1}-\frac{1}{3} \int \frac{x+2}{x^{2}+x+1} \mathrm{~d} x$. The first integral is elementary. For the second:

- First idea: By Example 84(4) from start of lecture it is useful to work in terms of the variable $u=x+\frac{1}{2}$. Get: $\int \frac{x+2}{x^{2}+x+1} \mathrm{~d} x=\int \frac{u+\frac{3}{2}}{\frac{3}{4}+u^{2}} \mathrm{~d} u$.
- Second idea: split integrand into two summands: $\int \frac{u+\frac{3}{2}}{\frac{3}{4}+u^{2}} \mathrm{~d} u=\int \frac{u}{\frac{3}{4}+u^{2}} \mathrm{~d} u+\frac{3}{2} \int \frac{1}{\frac{3}{4}+u^{2}} \mathrm{~d} u$. The second of those is dealt with in Example 84(4) above.
- Third idea: $u \mathrm{~d} u=\frac{1}{2} \mathrm{~d}\left(\frac{3}{4}+u^{2}\right)$ so $\int \frac{u}{\frac{3}{4}+u^{2}} \mathrm{~d} u=\frac{1}{2} \log \left(\frac{3}{4}+u^{2}\right)$.

REMARK 91. This can be generalized to $\int \frac{D x+E}{A x^{2}+B x+C} \mathrm{~d} x$ where the denominator is irreducible, following the steps:
(1) Complete the square in the denominator.
(2) Shift to the variable $u=x+\frac{B}{2 A}$, in which the denominator is $A\left(u^{2}+\frac{4 A C-B^{2}}{4 A^{2}}\right)$ and the numerator is $D u+\left(E-\frac{D B}{2 A}\right)$.
(3) Consider $\frac{D}{A} \int \frac{u \mathrm{~d} u}{u^{2}+\frac{4 A C-B^{2}}{4 A^{2}}}$ and $\left(E-\frac{D B}{2 A}\right) \int \frac{\mathrm{d} u}{u^{2}+\frac{4 A C-B^{2}}{4 A^{2}}}$ separately. The first is $\frac{D}{2 A} \log \left(u^{2}+\frac{4 A C-B^{2}}{4 A^{2}}\right)$ and the second is $\left(E-\frac{D B}{2 A}\right) \sqrt{\frac{4 A^{2}}{4 A C-B^{2}}} \arctan \left(\sqrt{\frac{4 A^{2}}{4 A C-B^{2}}} u\right)$ by changing variables via $v=$ $\sqrt{\frac{4 A^{2}}{4 A C-B^{2}}} u$.

2.3.2. Lecture 12-13: General scheme.

EXAMPLE 92. $\frac{1}{x^{3}-1}=\frac{1}{(x-1)\left(x^{2}+x+1\right)}$. Subtracting $\frac{1}{3(x-1)}$ get $\frac{x^{2}+x-2}{x^{3}-1}$. Know numerator vanishes at 1 so divisible by $x-1$; cancelling get $\frac{x+2}{x^{2}+x+1}=\frac{\left(x+\frac{1}{2}\right)}{\frac{3}{4}+\left(x+\frac{1}{2}\right)^{2}}+\frac{3}{2} \frac{1}{\frac{3}{4}+\left(x+\frac{1}{2}\right)^{2}}$.
$\frac{1}{x^{3}-x^{2}}=\frac{1}{x^{2}(x-1)}$. Near $1 \sim \frac{1}{x-1}$. Near $0 \sim-\frac{1}{x^{2}}$. Subtracting, we are left with

$$
\frac{1}{x^{3}-x^{2}}-\frac{1}{x-1}+\frac{1}{x^{2}}=\frac{1-x^{2}+x-1}{x^{2}(x-1)}=\frac{x-x^{2}}{x^{2}(x-1)}=\frac{1}{x}
$$

so

$$
\frac{1}{x^{3}-x^{2}}=\frac{1}{x-1}-\frac{1}{x^{2}}+\frac{1}{x} .
$$

Note 93. At each "bad point" we found the worst blowup. We then subtracted that. What's left blows up, but more slowly.

Example 94. $\frac{1}{x^{2}(x-1)^{2}}$. There will be a $\frac{C}{x^{2}}, \frac{D}{(x-1)^{2}}$. After taking those out left with $\frac{E}{x}, \frac{F}{x-1}$.
DEFINITION 95. Let f, g be functions, $a \in \mathbb{R}$. We say that f, g are asymptotic to each other near a and write $f \sim_{a} g$ if $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=1$.

EXAMPLE 96. If f is continuous and non-vanishing at a then $f \sim_{a} f(a)$. Also $\sin x \sim_{0} x$ and $\frac{1}{\sin x} \sim_{a} \frac{1}{x}$.

EXERCISE 97. This is an equivalence relation: If $f \sim_{a} f$, if $f \sim_{a} g$ then $g \sim_{a} f$ and if $f \sim_{a} g$ and $g \sim_{a} h$ then $f \sim_{a} h$.

DEFINITION 98. f has a zero of order/multiplicity m at a if $f \sim_{a} C(x-a)^{m}$ where $C \neq 0 . f$ has a pole if $f \sim_{a} \frac{C}{(x-a)^{m}}$.

Theorem 99. (Division with remainder) Let $P, Q \in \mathbb{R}[x]$ be polynomials. Then there exist unique polynomials A, B so that $P=A Q+B$ and such that $\operatorname{deg} B<\operatorname{deg} Q$.

Lemma 100. $P, Q \in \mathbb{R}[x]$ be polynomials with no common factors. Suppose that $(x-a)^{m}$ exactly divides Q, where $m \geq 1$, so that $Q(x)=(x-a)^{m} R(x)$. Then

$$
\frac{P}{Q} \sim_{a} \frac{P(a)}{R(a)} \frac{1}{(x-a)^{m}}
$$

and

$$
\frac{P}{Q}-\frac{P(a) / R(a)}{(x-a)^{m}}=\frac{\tilde{P}}{\tilde{Q}}
$$

where $\tilde{Q}=(x-a)^{\tilde{m}} R(x)$ with $\tilde{m}<m$, and \tilde{P}, \tilde{Q} have no common factors.
Proof. Check $P(a) \neq 0$ and then the first claim is clear.

$$
\frac{P}{Q}-\frac{P(a) / R(a)}{(x-a)^{m}}=\frac{1}{R(x)(x-a)^{m}}\left[P(x)-\frac{P(a)}{R(a)} R(x)\right] .
$$

Now the polynomial in the parenthesis vanishes at $x=a$ so it is of the form $(x-a)^{t} \tilde{P}(x)$ where $t \geq 1$ and $\tilde{P}(a) \neq 0$. Cancelling a factor $(x-a)^{\min \{m, t\}}$ gives $\tilde{m}=m-\min \{m, t\}<m$. Now consider an irreducible common factor T of \tilde{P}, \tilde{Q}. Either T divides R or $\tilde{m} \geq 1$ and T divides $(x-a)^{\tilde{m}}$. In the first case, T would divide $P(x)-\frac{P(a)}{R(a)} R(x)$ (a multiple of \tilde{P}) and and R hence also P. It would also divide Q (a multiple of \tilde{Q}) a contradiction. In the second case this would mean $\tilde{P}(a)=0$ which is impossible - in this case $t<m$.

Proposition 101. Let $P, Q \in \mathbb{R}[x]$ with $Q \neq 0$. Let $\left\{a_{i}\right\}_{i=1}^{r}$ be the zeroes of g, of multiplicity m_{i}. Then $\frac{P}{Q}=\sum_{i=1}^{r} \sum_{j=1}^{m_{i}} \frac{C_{i, j}}{\left(x-a_{i}\right)^{j}}+\frac{\tilde{P}}{\tilde{Q}}$ where $\tilde{P}, \tilde{Q} \in \mathbb{R}[x]$ with \tilde{Q} non-vanishing.

Proof. By induction on the degree of Q, applying Lemma 100 .
Theorem 102. (Expansion in Partial Fractions) Let $P, Q \in \mathbb{R}[x]$ with $Q \neq 0$. Then there are $\left\{a_{i}\right\}_{i=1}^{r} \subset \mathbb{R}$, irreducible quadratics $\left\{T_{k}\right\}_{k=1}^{s}$, integers m_{i} and n_{k} and constants $C_{i j} D_{k l}$, and a polynomials R so that

$$
\frac{P(x)}{Q(x)}=\sum_{i=1}^{r} \sum_{j=1}^{m_{i}} \frac{C_{i j}}{\left(x-a_{i}\right)^{j}}+\sum_{k=1}^{s} \sum_{l=1}^{n_{k}} \frac{D_{k l}}{T_{k}^{l}}+R(x)
$$

- Quadratic factors: say $\frac{P}{Q}=\frac{P}{R \cdot T^{m}}$ where T is quadratic irreducible. Again there is C so that $\frac{P}{Q}-\frac{C}{T^{m}}=\frac{\tilde{P}}{R \cdot T^{m}}$ with \tilde{m} smaller. More difficult to express the C.
- For this course: there will be at most one quadratic factor, to be found by subtracting the other parts.

2.4. Substitution II (27-30/1/2012)

Recall:

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

where $u=g(x)$. Now exchange the roles of x, u :
EXAMPLE 103 (Area of the disc). $\int_{-1}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$. Try $x=\sin \theta$, so $\mathrm{d} x=\cos \theta \mathrm{d} \theta$. What about endpoints?

Example 104. (Half-angle) Consider $\int \frac{\mathrm{d} \theta}{\sin \theta+\cos \theta}$.

2.5. Improper integrals and comparison (31/1/2012-3/2/2012)

Definition 105. Let f be defined on $[a, \infty)$ and Riemann integrable on every interval $[a, b]$ where $b \geq a$. If the limit $\lim _{T \rightarrow \infty} \int_{a}^{T} f(x) \mathrm{d} x$ exists we say that the "improper integral $\int_{a}^{\infty} f(x) \mathrm{d} x$ converges" and write

$$
\int_{a}^{\infty} f(x) \mathrm{d} x=\lim _{T \rightarrow \infty} \int_{a}^{T} f(x) \mathrm{d} x
$$

If the limit does not exist we say the integral diverges.
EXAMPLE 106. $\int_{a}^{T} e^{-x} \mathrm{~d} x=e^{-a}-e^{-T} \underset{T \rightarrow \infty}{ } e^{-a}$. For $a>0$ we have and $p \neq 1$ we have

$$
\int_{a}^{T} \frac{\mathrm{~d} x}{x^{p}}=\left[\frac{x^{1-p}}{1-p}\right]_{x=a}^{x=T}=\frac{a^{1-p}}{p-1}-\frac{T^{1-p}}{p-1} \underset{T \rightarrow \infty}{\longrightarrow}\left\{\begin{array}{ll}
\frac{a^{1-p}}{p-1} & p>1 \\
\infty & p<1
\end{array} .\right.
$$

Also, $\int_{a}^{T} \frac{\mathrm{~d} x}{x}=\log \frac{T}{a} \xrightarrow[T \rightarrow \infty]{ } \infty$.

- Idea: convergence of the integral is most often a question about the rapid decay of the integrand.
- Caution: sometimes can have congergence with slow decay due to cancellation.

EXAMPLE 107. $\lim _{T \rightarrow \infty} \int_{a}^{T} \frac{\sin x}{x^{p}} \mathrm{~d} x$ exists for all $p>0$ (to be seen later).

Definition 108. Similarly, if f is bounded on $(-\infty, a]$ and Riemann integrable on every bounded subinterval we set

$$
\int_{-\infty}^{a} f(x) \mathrm{d} x=\lim _{T \rightarrow-\infty} \int_{T}^{a} f(x) \mathrm{d} x .
$$

If f is bounded on the entire axis we say $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x$ converges if $\int_{a}^{\infty} f(x) \mathrm{d} x$ and $\int_{-\infty}^{a} f(x) \mathrm{d} x$ exist separately, and set $\int_{-\infty}^{+\infty} f(x) \mathrm{d} x=\int_{-\infty}^{a} f(x) \mathrm{d} x+\int_{a}^{\infty} f(x) \mathrm{d} x$

EXERCISE 109. The last definition is independent of the choice of a. Compare $\int_{-T}^{T} x \mathrm{~d} x$, $\int_{-T}^{T^{2}} x \mathrm{~d} x$ and $\int_{-T^{2}}^{T} x \mathrm{~d} x$.

REMARK 110.
(1) Note that the notation $\int_{a}^{\infty} f(x) \mathrm{d} x$ does not directly correspond to a calculation with Riemann sums. It is a shorthand for a limit of definite integrals.
(2) Suppose that f is continuous on $[a, \infty)$ with anti-derivative $F(x)$. Then $\int_{a}^{T} f(x) \mathrm{d} x=$ $F(T)-F(a)$ so the integral exists if and only if $\lim _{T \rightarrow \infty} F(T)$ exists.
Proposition 111. Suppose $\int_{a}^{\infty} f(x) \mathrm{d} x$ and $\int_{a}^{\infty} g(x) \mathrm{d} x$ converge. Then for any $\alpha, \beta \int_{a}^{\infty}(\alpha f+\beta g) \mathrm{d} x$ converges and $\int_{a}^{\infty}(\alpha f+\beta g) \mathrm{d} x=\alpha \int_{a}^{\infty} f \mathrm{~d} x+\beta \int_{a}^{\infty} g \mathrm{~d} x$.

Proof. Linearity of integrals and limits.
Definition 112. Suppose instead that f is defined on $[a, b)$ and Riemann integrable on every interval $[a, T]$ where $T<b$. If the limit $\lim _{T \rightarrow b} \int_{a}^{T} f(x) \mathrm{d} x$ exists we say that the "improper integral $\int_{a}^{b} f(x) \mathrm{d} x$ converges" and write $\int_{a}^{b} f(x) \mathrm{d} x$ for the value of the limit. A similar definition is made for the lower endpoint.
2.5.1. Asymptotics I - positive integrands. Suppose $f(x) \geq 0$ for all $x \geq a$. Then we think of $\int_{a}^{\infty} f(x) \mathrm{d} x$ as the area of an unboudned region. It's clear the area of the region is at least $\int_{a}^{T} f(x) \mathrm{d} x$ for all $T \geq a$. Also, $\int_{a}^{T} f(x) \mathrm{d} x$ is increasing in T.

THEOREM 113. Let $F(T)$ be an increasing function of T. Then either $F(T)$ is bounded and $\lim _{T \rightarrow \infty} F(T)$ exists or F is unboudned and $\lim _{T \rightarrow \infty} F(T)=\infty$.

NOTATION 114. In this case we write $\int_{a}^{\infty} f(x) \mathrm{d} x<\infty$ to indicate convergence.
Corollary 115. $\int_{a}^{\infty} f \mathrm{~d} x$ converges if and only if all the integrals $\int_{a}^{T} f \mathrm{~d} x$ are uniformly bounded. In particular, suppose that $0 \leq f(x) \leq g(x)$ for all x. Then:
(1) If $\int_{a}^{\infty} g \mathrm{~d} x<\infty$ then $\int_{a}^{\infty} f \mathrm{~d} x<\infty$.
(2) If $\int_{a}^{\infty} f \mathrm{~d} x=\infty$ then $\int_{a}^{\infty} g \mathrm{~d} x=\infty$

Corollary 116. Suppose that f, g are non-negative and that $0<A \leq \frac{f(x)}{g(x)} \leq B$ for all x large enough. Then $\int_{a}^{\infty} f(x) \mathrm{d} x, \int_{a}^{\infty} g(x) \mathrm{d} x$ either both converge or both diverge.

2.5.2. Absolute convergence.

DEFINITION 117. Say $\int_{a}^{\infty} f(x) \mathrm{d} x$ (or $\int_{a}^{b} f(x) \mathrm{d} x$) converges absolutely if the same integral with $|f(x)|$ instead converges.

THEOREM 118. Suppose $\int_{a}^{\infty} f(x) \mathrm{d} x$ converges absolutely. Then the integral converges and

CHAPTER 3

Applications

Paradigm:

(1) Parametrize: choose axes, co-ordinates etc.
(2) Slice: Divide the quantity to be calculated into infinitesimal pieces labelled by the parameter.
(3) Integrate: Write the quantity to be calculated as an integral over the slices and evaluate the integral.

3.1. Volume

3.1.1. Slicing by example ($6 / 2 / 2012$).

- "Infinitesimal approach" - cut up volume to be computed into infinitely many infinitely small pieces; add up contributions using integral.

Example 119. The volume of the ball
(1) Parametrize $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq R^{2}\right\}$. Decide to slice perpendicular to z axis.
(2) Partition interval of z values: $-R=z_{0}<z_{1}<\cdots<z_{n}=R$.
(3) To each part associate a "slab" $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq R^{2}, z \in\left[z_{i-1}, z_{i}\right]\right\}$. This is:
(a) Approximately cylindrical, of small height $\Delta z_{i}=z_{i}-z_{i-1}$.
(b) Approximately cylindrical, so of volume about $A\left(z_{i}\right) \Delta z_{i}$ where $A\left(z_{i}\right)$ is the crosssectional area of the cylinder.
(4) Conclude that the volume of the ball is about $\sum_{i=1}^{n} A\left(z_{i}\right) \Delta z_{i}$.
(a) This looks like a Riemann sum!
(b) Not an upper or lower sum, but bounded by them.
(c) We will dispense with the formal construction of outer and inner cylinders and simply say:

$$
\operatorname{vol}(B)=\int_{z=-R}^{z=R} A(z) \mathrm{d} z
$$

where $A(z)$ is the cross-sectional area at z.
(5) Slice at z is the disc $\left\{(x, y) \mid x^{2}+y^{2} \leq R^{2}-z^{2}\right\}$ of area $\pi\left(R^{2}-z^{2}\right)$.
(6) Volume is therefore

$$
\int_{-R}^{R} \pi\left(R^{2}-z^{2}\right) \mathrm{d} z=\frac{4 \pi}{3} R^{3}
$$

EXAMPLE 120 ("Improper volume"). Let R be the "hill" $R=\left\{(x, y, z) \mid 0 \leq z \leq e^{-x^{2}-y^{2}}\right\}$. Slice perpendicular to x axis.
(1) Slice at x looks like $\left\{(y, z) \mid 0 \leq z \leq e^{-x^{2}-y^{2}}\right\}$ so its area is the area under the graph of $z(y)=e^{-x^{2}} e^{-y^{2}}$. It follows that

$$
A(x)=\int_{y=-\infty}^{y=+\infty} e^{-x^{2}} e^{-y^{2}} \mathrm{~d} y=e^{-x^{2}} \int_{y=-\infty}^{y=+\infty} e^{-y^{2}} \mathrm{~d} y .
$$

(2) Thus $\operatorname{vol}(R)=\int_{x=-\infty}^{x=+\infty}\left[e^{-x^{2}}\left(\int_{y=-\infty}^{y=+\infty} e^{-y^{2}} \mathrm{~d} y\right)\right] \mathrm{d} x=\left(\int_{y=-\infty}^{y=+\infty} e^{-y^{2}} \mathrm{~d} y\right)\left(\int_{x=-\infty}^{x=+\infty} e^{-x^{2}} \mathrm{~d} x\right)=$ $\left(\int_{x=-\infty}^{x=+\infty} e^{-x^{2}} \mathrm{~d} x\right)^{2}$.
3.1.2. Slicing in general. Let R be a "nice" subset of three-dimensional space. Fix an axis (say z), and suppose the points of R have z co-ordinates between a, b. Take a parition $P: a=z_{0}<$ $\cdots<z_{n}=b$ of $[a, b]$, and slice:

$$
R=\bigcup_{i=1}^{n} R_{i}=\bigcup_{i=1}^{n}\left\{(x, y, z) \in R \mid z_{i-1} \leq z \leq z_{i}\right\}
$$

If $\delta(P)$ is small, the R_{i} have approximately constant cross-section. Write $R(z)$ for the infinitesimal slice $\{(x, y) \mid(x, y, z) \in R\}$ and $A(z)$ for its area. Let z_{i}^{*} be representative points in $\left[z_{i-1}, z_{i}\right]$. Then $\sum_{i=1}^{n} A\left(z_{i}^{*}\right) \Delta z_{i}$ is a Riemann sum. If $A(z)$ is Riemann integrable taking the limit will show that

$$
\operatorname{vol}(R)=\int_{a}^{b} A(z) \mathrm{d} z
$$

Slicing paradigm:
(1) Choose an axis along which to slice. Slices will be perpendicular to the axis.
(2) Parametrize the solid, preferably so that the slicing axis is a co-ordinate axis, say the z-axis.
(3) Identify the cross-sections $R(z)$ and calculate their area $A(z)$

- Sometimes this is elementary.
- Sometimes we use geometry
- Sometimes we use integration to calculate the area.
(4) The volume is $\int_{a}^{b} A(z) \mathrm{d} z$.

Example 121. Let C be a cone on base B and height H.
(1) Drop an altitude from the cone point to the plane containing the base. This altitute will be our z-axis.
(2) We may orient our axis so that the cone point is at $z=0$ and that the base is at $z=H$.
(3) The slice at heigh z is then a rescaled copy of the base; by similarity it has area $\operatorname{Area}(B)\left(\frac{z}{H}\right)^{2}$.
(4) It follows that

$$
\begin{aligned}
\operatorname{vol}(C) & =\int_{0}^{H} \operatorname{Area}(B)\left(\frac{z}{H}\right)^{2} \mathrm{~d} z \\
& =\frac{\operatorname{Area}(B)}{H^{2}} \int_{0}^{H} z^{2} \mathrm{~d} z \\
& =\frac{1}{3} \operatorname{Area}(B) \cdot H
\end{aligned}
$$

3.1.3. Solids of revolution (7/2/2012).

Example 122. (Solid of revolution). Let R be the region obtained by revolving a planar set A around x-axis. Suppose that $A=\{(x, y) \mid x \in[a, b], 0 \leq f(x) \leq y \leq g(x)\}$. Then

$$
R=\left\{(x, y, z) \mid x \in[a, b], f(x) \leq \sqrt{y^{2}+z^{2}} \leq g(x)\right\}
$$

Slicing perpendicular to x-axis Each cross-section is an annulus of area $\pi\left(g^{2}-f^{2}\right)$ so

$$
\operatorname{Area}(R)=\pi \int_{a}^{b} d x\left(g(x)^{2}-f(x)^{2}\right)
$$

For example, rotate the region $0 \leq y \leq \cos x$ about x-axis for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. The volume is

$$
\pi \int_{-\pi / 2}^{+\pi / 2} \mathrm{~d} x \cos ^{2} x=\frac{1}{2} \pi^{2}
$$

3.1.4. Other volume elements - cylindrical shells. Revolve $A=\{(x, y) \mid x \in[a, b], 0 \leq f(x) \leq y \leq g(x)\}$ around y-axis. Renaming the axes the resulting region is $R=\left\{(x, y, z) \mid a \leq \sqrt{x^{2}+y^{2}} \leq b, f\left(\sqrt{x^{2}+y^{2}}\right) \leq z \leq g(\sqrt{ })\right.$ Instead of slicing, divide R into cylndrical shells around the axis. The shell of radius r has surface area $2 \pi r(g(r)-f(r))$ so the volume is

$$
2 \pi \int_{a}^{b} r \mathrm{~d} r(g(r)-f(r))
$$

EXAmple 123.
(1) The volume of the ball is $\int_{x=0}^{x=R} \mathrm{~d} x\left(2 \sqrt{R^{2}-x^{2}} \cdot 2 \pi x\right)=2 \pi \int_{u=0}^{u=R^{2}} \sqrt{R^{2}-u} \mathrm{~d} u=-2 \pi\left[-\frac{2}{3}\left(R^{2}-u\right)^{3 / 2}\right]_{u=0}^{u=R^{2}}$ $\frac{4 \pi}{3} R^{3}$.
(2) A wineglass is obtained by revolving the area between the y-axis, the curve $y=x^{2}$ and the line $y=4$ about the y-axis. Find the volume. $\left(2 \pi \int_{x=0}^{2} x\left(4-x^{2}\right) \mathrm{d} x=2 \pi\left(2 \cdot 4-\frac{16}{4}\right)=8 \pi\right.$. If the glass is half-full, how high is the liquid? We need to solve $2 \pi \int_{0}^{\sqrt{H}} x\left(H-x^{2}\right) \mathrm{d} x=\frac{4 \pi}{3}$ that is $2 \pi\left(\frac{H^{2}}{2}-\frac{H^{2}}{4}\right)=8 \pi$. We get $H^{2}=8$, that is $H=2 \sqrt{2}$.
(3) $\left\{(x, y, z) \mid 0 \leq z \leq e^{-\left(x^{2}+y^{2}\right)}\right\}$ is a solid of revolution. Has volume $2 \pi \int_{r=0}^{\infty} r e^{-r^{2}}=\pi \int_{u=0}^{\infty} e^{-u} \mathrm{~d} u=$ π. Combining with Example 120 we find

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}
$$

3.2. Arc length ($10 / 2 / 2012$)

If f^{\prime} is continuous, the length of the graph of $y=f(x)$ on $[a, b]$ is

$$
\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x
$$

(derived by cutting curve into approximate line segments).

3.3. Surface area (PS6)

3.4. Mass and density ($13 / 2 / 2012$)

DEFINITION 124. "Density" usually means amount of substance per geometric unit. Examples include:

- "Volume density of mass" = amount of mass per unit volume of the substance
- "Length density of charge" = amount of electrical charge per unit length of the material "Density" with no other qualifiers will mean volume density of mass.

Suppose a body consists of material of variable density. Its total mass can then be calculated as a sum of contributions from different parts:

$$
\text { Mass }=\int(\text { density }) \times \mathrm{dVol}
$$

where the volume elements are assumed to have constant density.

- Note: Most natural to slice at constant density.

EXAMPLE 125. A room has floor area A and height H. The density of air falls of like $\frac{\rho_{0}}{1+\frac{z}{T_{0}}}$ where z is the height above the floor (ρ_{0} is the density of air at floor level, l_{0} a length scale for the decay of the density). What is the mass of air in the room?

- Consider planar slices perpendicular to the z axis.
- The infinitesimal slice between heights $z, z+d z$ has infinitesimal volume $A \mathrm{~d} z$ and hence infinitesimal mass $\frac{\rho_{0}}{1+\frac{z}{I_{0}}} A \mathrm{~d} z$.
- The total mass is then

$$
\int_{0}^{H} \frac{\rho_{0} A}{1+\frac{z}{l_{0}}} \mathrm{~d} z=\left(\rho_{0} l_{0} A\right) \int_{0}^{H} \frac{1}{1+\frac{z}{l_{0}}} \frac{\mathrm{~d} z}{l_{0}}=\left(\rho_{0} l_{0} A\right) \log \left(1+\frac{H}{l_{0}}\right) .
$$

REMARK 126. Note that the units of work out correctly: $l_{0} A$ has units of volume, ρ_{0} has units of $\frac{\text { mass }}{\text { volume }}$ while $\frac{H}{l_{0}}$ has no units, so can be put in a log.

Example 127. Perrin's law states that the density of air in the atmosphere decays like $\rho=$ $\rho_{0} e^{-\frac{r}{r_{0}}}$ where ρ_{0} is the distance at the surface, r is the height above the surface, and r_{0} is a length scale. What is the total mass of the atmosphere?

- Consider spherical shells around the Earth.
- The shell at height r and thickness $d r$ has radius $(R+r)$ and therefore volume $4 \pi(R+$ $r)^{2} \mathrm{~d} r$ (use formula for the area of the sphere). Hence the shell contributes the infinitesimal mass $4 \pi \rho_{0}(R+r)^{2} e^{-\frac{r}{r_{0}}} \mathrm{~d} r$.
- Integrating we find

$$
\begin{aligned}
\text { Mass } & =4 \pi \rho_{0} \int_{0}^{\infty}\left(R^{2}+2 R r+r^{2}\right) e^{-r / r_{0}} \mathrm{~d} r \\
& =4 \pi \rho_{0}\left[R^{2} r_{0} \int_{0}^{\infty} e^{-s} \mathrm{~d} s+2 R r_{0}^{2} \int_{0}^{\infty} s e^{-s} \mathrm{~d} x+r_{0}^{3} \int_{0}^{\infty} s^{2} e^{-s} \mathrm{~d} s\right] \\
& =4 \pi \rho_{0}\left[R^{2} r_{0}+2 R r_{0}^{2}+2 r_{0}^{3}\right] .
\end{aligned}
$$

- Remark: since $r_{0} \ll R$ (tens of km vs thousands of km) the first term dominates. In other words, most of the atmosphere is in the shell of thickness r_{0} around the Earth, which has approximate volume $4 \pi R^{2} r_{0}$ and on which the density is about ρ_{0}. This is the "first order approximation" to which the other terms are corrections.

3.5. Centre-of-mass (14-15/2/2012)

3.5.1. 14/2/2012. Discussion: bodies resist forces according to mass, resist rotation according to moment of inertia. Most natural to rotate around the point where the moment is minimized, that is the center-of-mass.

DEFINITION 128. The x-co-ordinate of the center of mass is given by the weighted average:

$$
\frac{\int x \rho \mathrm{dVol}}{\int \rho \mathrm{dVol}}
$$

where dVol are volume elements and ρ is the density.
REMARK 129. In this course we will generally assume that ρ is a function of one co-ordinate only, and use symmetry to find the y, z co-ordinates of the center-of-mass.

Example 130. A sword has length L, length density of mass $\frac{c}{z^{2}+l_{0}^{2}}$ where z is the distance from the hilt. Find the center of mass.

- It is at a distance from the hilt given by

$$
\begin{aligned}
\frac{\int_{0}^{L} \frac{c}{z^{2}+l_{0}^{2}} \mathrm{~d} z}{\int_{0}^{L} \frac{c}{z^{2}+l_{0}^{2}} \mathrm{~d} z} & =\frac{\frac{1}{2} \int_{z=0}^{z=L} \frac{d\left(z^{2}+l_{0}^{2}\right)}{z^{2}+l_{0}^{2}}}{\frac{1}{l_{0}} \int_{z=0}^{z=L} \frac{d\left(z / l_{0}\right)}{1+\left(z / l_{0}\right)^{2}}} \\
& =\frac{l_{0}}{2} \cdot \frac{\log \left(\frac{L^{2}+l_{0}^{2}}{l_{0}^{2}}\right)}{\arctan \left(\frac{L}{l_{0}}\right)} .
\end{aligned}
$$

- But the sword is 3-dimensional?
- Yes, but because of its reflection symmetry in x, y axes the center-of-mass must be along the axis of the sword, so can treat it as a 1-d problem. The "length density" above is really $\rho(z) A(z)$ where ρ is the volume density and $A(z)$ is the cross-sectional area of the sword.

Example 131. The center of mass of some plane figures:

- The disc: by rotational symmetry (or by reflecting in x, y axes separate) the CM is in the center.
- An equilateral triangle: by symmetry again, this must be at the meeting point of the medians.
- An isoceles triangle:
- Symmetry: The CM must be along the bisector of the angle at the meeting of the equal sides.
- Parametrize: Assume that the base of the triangle is on the x-axis with the y-axis running along the bisector, so that the vertices at $(-a, 0),(a, 0),(0, H)$.
- Slice: Divide into strips perpendicular to the y-axis. By similarity of triangle the strip at height y from the base has length satsifying

$$
\frac{L(y)}{H-y}=\frac{2 a}{H} .
$$

It follows that the center-of-mass is at

$$
\frac{\int_{0}^{H} 2 a \frac{H-y}{H} y \mathrm{~d} y}{\int_{0}^{H} 2 a \frac{H-y}{H} \mathrm{~d} y} .
$$

- Integrate: Note that a scales away, so that the length of the base doesn't matter. So can make triangle equilateral and calculate that way, or just do the integral:

$$
=\frac{\left[H \frac{y^{2}}{2}-\frac{y^{3}}{3}\right]_{0}^{H}}{\left[H y-\frac{y^{2}}{2}\right]_{0}^{H}}=\frac{\frac{1}{6} H^{3}}{\frac{1}{2} H^{2}}=\frac{1}{3} H .
$$

- Remark: can simplify the calculation by having y axis run the opposite way, so that $y=0$ at the tip.

3.5.2. 14/2/2012.

Definition 132 (Euler's Gamma function). $\Gamma(s)=\int_{0}^{\infty} x^{s} e^{-x} \frac{\mathrm{~d} x}{x}$.
Recall:
FACT 133 (PS5). The integral converges absolutely for $s>0$, satisfies the law $s \Gamma(s)=\Gamma(s+1)$, and hence $\Gamma(n+1)=n!$ for all natural numbers n.

EXERCISE 134 (Change of variables). Show that $\Gamma\left(\frac{1}{2}\right)=\int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}$.
Example 135. Let R be the region under the graph of $y=e^{-x^{2}}$. Find its CM.

- By symmetry the CM must be on the y-axis, so we only need to find its y-co-ordinate.
- Hence we slice perpendicular to y-axis. Infinitesimal slices are horizontal strips extending from $(-x, y)$ to (x, y) where $y=e^{-x^{2}}$.
- It follows that the area of such a strip is $2 \sqrt{-\log y} \mathrm{~d} y$.
- Sanity check: for us $0<y \leq 1$ so $\log y \leq 0$ and $-\log y \geq 0$.
- The CM is therefore at height

$$
\frac{2 \int_{0}^{1} \sqrt{-\log y} y \mathrm{~d} y}{2 \int_{0}^{1} \sqrt{-\log y} \mathrm{~d} y} .
$$

We note the lower integral is simply the area of R, that is $\sqrt{\pi}$.

- We now evaluate the top integral. We get ride of the square root \log by shifting to $y=e^{-t}$. We therefore need to calculate:

$$
\begin{aligned}
\frac{2}{\sqrt{\pi}} \int_{\infty}^{0} \sqrt{t} e^{-t}\left(-e^{-t} \mathrm{~d} t\right) & =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \sqrt{t} e^{-(2 t)} d(2 t) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} x^{\frac{1}{2}} e^{-x} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \Gamma\left(\frac{3}{2}\right)=\frac{1}{\sqrt{2} \Gamma\left(\frac{1}{2}\right)} \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \\
& =\frac{1}{2 \sqrt{2}} .
\end{aligned}
$$

Problem 136. d

3.6. Integrating differential equations (17/2/2012)

Suppose $y(x)$ solves the equation $y^{\prime}=G(x) F(y)$. Then by the change of variable formula, $\int \frac{\mathrm{d} y}{F(y)}=\int G(x) \mathrm{d} x$, and we can integrate and solve for y.

Example 137. $y^{\prime}=y$. Then $\frac{\mathrm{d} y}{y}=\mathrm{d} x$ so $\log |y|=x+C$. Thus $y= \pm e^{C} e^{x}$, which since y is continuous must take the form $y=A e^{x}, A \in \mathbb{R}$, non-zero. Note that we don't find the solution $y=0$ since the change-of-variable makes no sense there, but setting $A=0$ in the formula does give this solution too.

EXAMPLE 138 (Logistic growth). Consider now the equation $y^{\prime}=r y(1-y)$. Then $\frac{\mathrm{d} y}{y(1-y)}=$ $r \mathrm{~d} x$. Since $\frac{1}{y(1-y)} \sim_{0} \frac{1}{y}$ and $\frac{1}{y(1-y)} \sim_{1} \frac{1}{1-y}$ we can integrate using partial fractions:

$$
\log \frac{y}{1-y}=r x+C
$$

at least in the interesting region where $0<y<1$ (boundaries correspond to total extinction and the maximal population, respectively. Then

$$
\frac{y}{1-y}=e^{r x+C}
$$

so

$$
y=\frac{e^{r x+C}}{e^{r x+C}+1}=1-\frac{1}{e^{r x+C}+1},
$$

where C is chosen so that $y(0)=1-\frac{1}{e^{C}+1}$.
EXAMPLE 139 (The Catenary). The equation $y^{\prime \prime}=C \sqrt{1+\left(y^{\prime}\right)^{2}}$ describes the shape of a hanging chain ("catenary" in the latin).

Letting $z=y^{\prime}$ we have

$$
\frac{d z}{\sqrt{1+z^{2}}}=C d x
$$

We use the substitution ("hyperbolic sine") $z=\frac{e^{t}-e^{-t}}{2}$ (this is monotone for all t). Then $d z=\frac{e^{t}+e^{-t}}{2}$ and

$$
\frac{1}{\sqrt{1+z^{2}}}=\frac{1}{\sqrt{1+\frac{e^{2 t}-2+e^{-2 t}}{4}}}=\frac{1}{\sqrt{\left(\frac{e^{t}+e^{-t}}{2}\right)^{2}}}=\frac{2}{e^{t}+e^{-t}} .
$$

It follows that for some A we have

$$
t=C x+A
$$

so that

$$
z=\frac{e^{C x+A}-e^{-(C x+A)}}{2} .
$$

We now integrate again to find:

$$
y=\frac{1}{2 C} e^{C x+A}+\frac{1}{2 C} e^{-(C x+A)}+B .
$$

Suppose now that the chain hangs with endpoints at $x= \pm L, y=0$. Then by symmetry we must have $A=0$ and $B=-\frac{e^{C L}+e^{-C L}}{2 C}$. It follows that

$$
y=\frac{e^{C x}+e^{-C x}}{2 C}-\frac{e^{C L}+e^{-C L}}{2 C}
$$

The bottom of the chain, for example, is at height $-\frac{\left(e^{C L / 2}-e^{-C L / 2}\right)^{2}}{2}$

3.7. Continuous Probability (27-29/2)

3.7.1. Discrete Probability.

3.7.1.1. Problems to keep in mind:

- We roll a die. How much would you bet that the die comes out 1,2 or 3 ?
- A gambling game is interrupted in the middle. How do we divide the pot?
3.7.1.2. Probability spaces.

NOTATION 140. Ω will be a set ("sample space" or "space of simple events"). An event will mean a subset of Ω.

Definition 141. A real-valued function Pr defined on subsets of Ω is called a probability distribution if:
(1) For $A \subset \Omega, 0 \leq \operatorname{Pr}(A) \leq 1$
(2) $\operatorname{Pr}(\emptyset)=0$ and $\operatorname{Pr}(\Omega)=1$.
(3) If A, B are disjoint events then $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$.

REMARK 142. For technical reasons not all subsets may have a probability and we need (3) to apply to infinite disjoint unions too.

- We suppose for now that Ω is finite.

EXAMPLE 143 (Uniform distribution). Let Ω be finite, and for $A \subset \Omega$ set $\operatorname{Pr}(A)=\frac{\# A}{\# \Omega}$. Easy to check (1),(2),(3) above (the third is the statement that the size of a disjoint union is a sum of the sizes of the parts.

If $\Omega=\{1, \cdots, 6\}$ and $A=\{1,2\}, B=\{3\}$ then $\operatorname{Pr}(A)=\frac{1}{3}, \operatorname{Pr}(B)=\frac{1}{6}$ and $\operatorname{Pr}(A \cup B)=\frac{1}{2}$.

More generally, a probability distribution Pr on a finite set Ω is determined by the values at simple events, $p_{\omega}=\operatorname{Pr}(\{\omega\})$. Indeed each p_{ω} is a number between 0,1 subject to $\sum_{\omega \in \Omega} p_{\omega}=$ $\operatorname{Pr}\left(\cup_{\omega \in \Omega}\{\omega\}\right)=\operatorname{Pr}(\Omega)=1$ and for any $A, \operatorname{Pr}(A)=\sum_{\omega \in A} p_{\omega}$.

EXAMPLE 144. A simple lottery has $\Omega=\{$ win, loss $\}$ with $p_{\text {win }}=10^{-6}$ and $p_{\text {loss }}=1-10^{-6}$.
3.7.1.3. Random variables, expectation, variance etc.

DEFINITION 145. A random variable is a real-valued function on X.
Example 146. For a final example, let Ω be the set of UBC students, with the uniform probability distribution. Let $X(\omega)$ be the height of the student, $Y(\omega)$ the GPA of the student.

Definition 147. The expectation of X is defined to be the weighted average $\mathbb{E} X \stackrel{\text { def }}{=} \sum_{\omega \in \Omega} p_{\omega} X(\omega)$. When X is clear we write $\mu=\mathbb{E} X$.

EXAMPLE 148. Consider the uniform distribution on $\Omega=\{1, \cdots, 6\}$ and the two random variables $X(\omega)=\omega$ and $Y(\omega)=2^{\omega}$. We have

$$
\mathbb{E} X=\sum_{i=1}^{6} \frac{1}{6} i=3.5
$$

and

$$
\mathbb{E} Y=\sum_{i=1}^{6} \frac{1}{6} 2^{i}=\frac{1}{6} 2 \sum_{i=0}^{5} 2^{i}=\frac{1}{3}\left(2^{6}-1\right)=21
$$

Definition 149. The Variance of X is the expectation of the random variable $(X-\mu)^{2}$. We calculate:

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mu)^{2}=\mathbb{E}\left(X^{2}-2 \mu X+\mu^{2}\right)=\mathbb{E}\left(X^{2}\right)-2 \mu \mathbb{E} X+\mu^{2}=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}
$$

The standard deviation of X is $\sigma=\sqrt{\operatorname{Var}(X)}$.

3.7.2. Continuous probability.

3.7.2.1. Definition.

Definition 150. We say that the random variable X has a continuous distribution if there is a function $p(x)$ so that

$$
\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} p(x) \mathrm{d} x
$$

In that case p is called the probability density function.
Lemma 151. p is a probability density function if and only if:
(1) $p(x) \geq 0$ for all x.
(2) $\int_{-\infty}^{+\infty} p(x) \mathrm{d} x=1$.

- Normalization: suppose f is non-negative and not identically zero, and $C=\int_{-\infty}^{+\infty} f(x) \mathrm{d} x<$ ∞. Then $p(x)=\frac{f(x)}{C}$ is a probability density function.

EXAMPLE 152 (Uniform continuous distribution). Let $f(x)=\left\{\begin{array}{ll}1 & a \leq x \leq b \\ 0 & \text { otherwise }\end{array}\right.$. This expresses the idea that x is uniformly distributed between a, b. We first normalize: $\int_{\mathbb{R}} f(x) \mathrm{d} x=b-a$ so

$$
p(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

is the probability distribution function.
Problem 153. X is chosen uniformly at random in [5,12]. What is the probability that $3 \leq$ $X \leq 7$?

Solution: this is $\int_{3}^{7} \frac{1}{7} \mathrm{~d} x=\frac{4}{7}$.
Example 154 (Exponential distribution). Suppose that X has a distribution with density function proportional to $e^{-a x}$ for $x \geq 0$, zero otherwise. What is the probability density function?

Solution: $\int_{0}^{\infty} e^{-a x} \mathrm{~d} x=\frac{1}{a}$ so the PDF is $p(x)=a e^{-a x}$.
3.7.2.2. Expectation, Variance etc.

DEFINITION 155 . Let $p(x)$ be the probability density function of a random variable X.
(1) If $\int_{\mathbb{R}} x p(x) \mathrm{d} x$ converges, we say that X has an expectation and set $\mu=\mathbb{E} X=\int_{-\infty}^{+\infty} x p(x) \mathrm{d} x$.
(2) If $\int_{-\infty}^{+\infty} x^{2} p(x) \mathrm{d} x$ we say that X has variance, and also set $\sigma^{2}=\mathbb{E}(X-\mu)^{2}=\int_{-\infty}^{+\infty}(x-$ $\mu)^{2} p(x) \mathrm{d} x=\int_{-\infty}^{+\infty} x^{2} p(x) \mathrm{d} x-\mu^{2}$.

EXAMPLE 156. For the uniform distribution on $[a, b]$, the expectation is $\int_{a}^{b} x \frac{\mathrm{~d} x}{b-a}=\frac{1}{b-a}\left[\frac{x^{2}}{2}\right]_{a}^{b}=$ $\frac{b^{2}-a^{2}}{2(b-a)}=\frac{b+a}{2}$. The variance is

$$
\int_{a}^{b} x^{2} \frac{\mathrm{~d} x}{b-a}-\left(\frac{b+a}{2}\right)^{2}=\frac{b^{3}-a^{3}}{3(b-a)}-\frac{a^{2}+2 a b+b^{2}}{4}=\frac{a^{2}-2 a b+b^{2}}{12}=\frac{(a-b)^{2}}{12}
$$

It follows that $\sigma=\frac{b-a}{\sqrt{12}}$.
3.7.2.3. Example: the exponential distribution.

CHAPTER 4

Parametric curves

See textbook.
Example: $t \mapsto\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right)$ traces the unit circle except for the point $(0,1)$.

CHAPTER 5

Sequences and Series

5.1. Sequences and Convergence

5.1.1. Review: sequences ($6 / 3 / 2012$).

Definition 157. A sequence is a function whose domain is $\left\{n \in \mathbb{Z} \mid n \geq n_{0}\right\}$.
EXAMPLE 158. The following are sequences of functions

- $f_{n}(x)=x^{n}$ on $[0,1]$, for $n=0,1,2, \ldots$
- $g_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$.

DEFINITION 159. (Arithmetic of sequences) Let $\left\{a_{n}\right\}_{n \geq n_{0}},\left\{b_{n}\right\}_{n \geq n_{0}}$ be sequences defined on the same set of integers. We call the sequences $\left\{a_{n}+b_{n}\right\}_{n \geq n_{0}},\left\{a_{n}-b_{n}\right\}_{n \geq n_{0}},\left\{a_{n} \cdot b_{n}\right\}_{n \geq n_{0}}$ respectively the sum, difference, and product of the two sequences.

DEFINITION 160. Let $\left\{a_{n}\right\}_{n \geq n_{0}} \subset \mathbb{R}$ be a sequence.

- We say that it is increasing if $a_{n+1}>a_{n}$ for all $n \geq n_{0}$, non-decreasing if $a_{n+1} \geq a_{n}$. Decreasing and non-increasing sequences are defined similarly. In any of the cases we say the sequence is monotone.
- We say the sequence is bounded above if for some $M, a_{n} \leq M$ for all M. We say the sequence is bounded below if for some m we have $a_{n} \geq m$ for all m. We say the sequence is bounded if it is bounded above and below, equivalently if $\left\{\left|a_{n}\right|\right\}_{n \geq n_{0}}$ is bounded above.

DEFINITION 161. A tail of the sequence $\left\{a_{n}\right\}_{n \geq n_{0}}$ is any sequence of the form $\left\{a_{n}\right\}_{n \geq n_{1}}$ where $n_{1} \geq n_{0}$.

Example 162. $5,6,7,8,9, \cdots$ is a tail of $0,1,2,3,4,5, \cdots$.
DEFINITION 163. We say the sequence $\left\{a_{n}\right\}_{n \geq n_{0}}$ eventually has some property if some tail of the sequence has it.

Math 121: In-class worksheet for lecture 2

EXAMPLE 164. Some explicit sequences:
(1) $a_{n}=1$ for $n \geq 0$.
(2) $b_{n}=1+\frac{1}{n}$ for $n \geq 1$
(3) $c_{n}= \begin{cases}1 & n \text { prime } \\ 0 & \text { otherwise }\end{cases}$
(4) $d_{n}=e^{-n}$ for $n \geq-5$.
(5) $e_{n}=n$ for $n \geq 0$
(6) $f_{n}=n$ for $n \geq 1$.
(7) $g_{n}=1-\frac{1}{n}$.

EXERCISE 165. Which of the sequences are increasing? non-decreasing? decreasing? nonincreasing?

EXERCISE 166. Which of the sequences is bounded above? bounded below? bounded? Find explicit bounds when applicable.

EXERCISE 167. Show that $h_{n}=(n-5)^{2}$ for $n \geq 0$ is eventually increasing. Show that $T_{n}=$ $\frac{1}{1+(n-5)^{2}}$ is eventually decreasing. Show that $R_{n}=n^{3}-10$ is eventually positive. Show that b_{n} is eventually less than $1+\frac{1}{10^{6}}$.

5.1.2. Limits (7/3/2012).

DEFINITION 168. Let $\left\{a_{n}\right\}_{n \geq n_{0}} \subset \mathbb{R}$ be a sequence of real numbers. Let $L \in \mathbb{R}$. We say that "the sequence tends to the limit L " and write $\lim _{n \rightarrow \infty} a_{n}=L$ if for every $\varepsilon>0$, eventually the a_{n} are in $[L-\varepsilon, L+\varepsilon]$. Equivalently, if for every $\varepsilon>0$ there is N such that for $n \geq N$ we have $\left|a_{n}-L\right| \leq \varepsilon$. If the sequence tends to a limit we say that it converges. It it does not tend to any limit we say that it diverges.

Example 169. Let $a_{n}=A$ for all n. Then $\lim _{n \rightarrow \infty} a_{n}=A$.
Proof. Given $\varepsilon>0$ let $N=0$. Then if $n \geq 0$ we have $\left|a_{n}-A\right|=0 \leq \varepsilon$.
EXAMPLE 170. Let $b_{n}=\frac{1}{n}$ for all $n \geq 1$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof. Indeed for $\varepsilon>0$ let $N=\frac{1}{\varepsilon}$. then if $n \geq N$ we have $\left|a_{n}-0\right|=\frac{1}{n} \leq \frac{1}{N}=\varepsilon$.
EXAMPLE 171. The sequence $c_{n}=(-1)^{n}$ diverges.
Proof. Suppose $\lim _{n \rightarrow \infty} c_{n}=L$ was true. Then for $\varepsilon=\frac{1}{2}$ there would be N so that for $n \geq N$, $\left|c_{n}-L\right| \leq \frac{1}{2}$. Taking an even $n \geq N$ we see that $|1-L| \leq \frac{1}{2}$. Taking and odd $n \geq N$ we also see that $|-1-L| \leq \frac{1}{2}$. It follows that $|2| \leq|1+L|+|1-L| \leq 1$, a contradiction.

Lemma 172. A sequence can have at most one limit.
Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}=A$ and also $\lim _{n \rightarrow \infty} a_{n}=B$ and that $A<B$. Let $\varepsilon<\frac{B-A}{2}$. Then there are N_{1}, N_{2} so that for $n \geq N_{1}, a_{n} \in[A-\varepsilon, A+\varepsilon]$ and for $n \geq N_{2}, a_{n} \in[B-\varepsilon, B+\varepsilon]$. Now for $n \geq \max \left\{N_{1}, N_{2}\right\}$ we see that $a_{n} \leq A+\varepsilon<B-\varepsilon \leq a_{n}$, a contradiction.

LEMMA 173. Let $\left\{a_{n}\right\}_{n \geq n_{1}}$ be a tail of $\left\{a_{n}\right\}_{n \geq n_{0}}$. Then either both converge or both diverge; in the first case they have the same limit.

Proposition 174. Let $\left\{a_{n}\right\}_{n \geq n_{0}}$ converge. Then it is bounded.
Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}=L$, and let N be such that for $n \geq N$ we have $\left|a_{n}-L\right| \leq 1$. Let $M=\max \left\{|L|+1,\left|a_{n_{0}}\right|,\left|a_{n_{0}+1}\right|, \cdots,\left|a_{N}\right|\right\}$. The for any n we have $\left|a_{n}\right| \leq L$ (either $n \leq N$ or $n \geq$ N).

Corollary 175. $\lim _{n \rightarrow \infty} n$ does not exist.
ALGORITHM 176 (Arithmetic of limits). Suppse $\left\{a_{n}\right\}_{n \geq n_{0}},\left\{b_{n}\right\}_{n \geq n_{0}} \subset \mathbb{R}$ are convergent sequences with $\lim _{n \rightarrow \infty} a_{n}=A, \lim _{n \rightarrow \infty} b_{n}=B$.
(1) (linearity) Let $\alpha, \beta \in \mathbb{R}$. Then $\lim _{n \rightarrow \infty}\left(\alpha a_{n}+\beta b_{n}\right)$ exists and equals $\alpha A+\beta B$
(2) (multiplicativity) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)$ exists and equals $A B$.
(3) Suppose $B \neq 0$. Then b_{n} is eventually non-zero, and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and equals $\frac{A}{B}$.

Proof. We have $\left|\left(\alpha a_{n}+\beta b_{n}\right)-(\alpha A+\beta B)\right| \leq|\alpha|\left|a_{n}-A\right|+|\beta|\left|b_{n}-B\right|$ and $\left|a_{n} b_{n}-A B\right| \leq$ $\left|a_{n}-A\right|\left|b_{n}\right|+|A|\left|b_{n}-B\right| \leq\left|a_{n}-A\right| M+|A|\left|b_{n}-B\right|$ where M is a bound for $\left|b_{n}\right|$. Finally, eventually $\left|b_{n}-B\right| \leq \frac{1}{2}|B|$ so $\left|b_{n}\right| \geq \frac{1}{2}|B|>0$ and after that point $\left|\frac{1}{b_{n}}-\frac{1}{B}\right|=\frac{\left|B-b_{n}\right|}{\left|b_{n} B\right|} \leq \frac{2}{|B|^{2}}\left|b_{n}-B\right|$.

EXAMPLE 177. $\lim _{n \rightarrow \infty} \frac{n^{7}+8 n+1}{3 n^{7}-2 n^{2}}=\lim _{n \rightarrow \infty} \frac{1+8 n^{-6}+n^{-7}}{3-2 n^{-5}}=\frac{1}{3}$.
To know that some limits exists we need a rule that creates real numbers.

AXIOM 178. Let A, B be non-empty sets of real numbers such that if $a \in A, b \in B$ then $a \leq b$. Then there is a real number L such that $a \leq L \leq b$ for all $a \in A, b \in B$.

THEOREM 179. Let $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}$ be monotone and bouned. The sequence then converges.
Proof. Suppose that a_{n} is non-decreasing. Let A be the set of values taken by the sequence, and let B be the set of upper bounds for the sequence. Then by assumption A, B are non-empty and satisfy the hypotheses of the axiom. Let L be as in the axiom. Then $a_{n} \leq L$ for all L. Now let $\varepsilon>0$. Then $L-\varepsilon<L$ so $L-\varepsilon \notin B$. It follows that there is N so that $a_{N}>L-\varepsilon$. Then for $n \geq N$ we have $L-\varepsilon<a_{N} \leq a_{n} \leq L$. It follows that $\left|a_{n}-L\right| \leq \varepsilon$ if $n \geq N$.

EXAMPLE 180. Suppose that $a_{n+1}=\sqrt{a_{n}+2}$. Find
Solution. First, suppose that $L=\lim _{n \rightarrow \infty} a_{n}$ exists. Then $\lim _{n \rightarrow \infty}\left(a_{n}+2\right)=L+2$ by arithmetic of limits, and $\lim _{n \rightarrow \infty} \sqrt{a_{n}+2}=\sqrt{L+2}$ by continuity of $\sqrt{ }$. Since $\left\{a_{n+1}\right\}$ is a tail of a_{n} it also tends to the same limit and we find $L=\sqrt{L+2}$ so $L^{2}-L-2=0$ with solutions $L=2,-1$. Since $a_{n} \geq 0$ for all n we must have $L=2$. We now show that the sequence is bounded and monotone. First, suppose $a_{n}<1000$. Then $a_{n+1} \leq \sqrt{1000+2}<1000$ so by induction $0 \leq a_{n} \leq 1000$ for all n. Next,

$$
a_{n+1}-a_{n}=\sqrt{a_{n}+2}-\sqrt{a_{n-1}+2}=\frac{\left(a_{n}+2\right)-\left(a_{n-1}+2\right)}{\sqrt{a_{n}+2}+\sqrt{a_{n-1}+2}}=\frac{a_{n}-a_{n-1}}{\sqrt{a_{n}+2}+\sqrt{a_{n-1}+2}} .
$$

It follows that $a_{n+1}-a_{n}$ has constant sign, so the sequence is monotone. It is therefore convergent, to 2 .

Alternative: $2-a_{n+1}=\frac{2-a_{n}}{2+\sqrt{a_{n}+2}}<\frac{2-a_{n}}{2}$ so $0<2-a_{n+1}<\frac{2-a_{1}}{2^{n}}$. It follows that $a_{n} \rightarrow 2$.
EXAmple 181. Let $a_{0}=1$ and let $a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}$. Then by induction:
(1) Suppose it converged. Then the limit would satisfy $L=\frac{L}{2}+\frac{1}{L}$, so $L=\sqrt{2}$.
(2) $a_{n+1}-a_{n}=\frac{a_{n}-a_{n-1}}{2}+\frac{1}{a_{n}}-\frac{1}{a_{n-1}}=\left(a_{n}-a_{n-1}\right)\left[\frac{1}{2}-\frac{1}{a_{n} a_{n-1}}\right]=\left(a_{n}-a_{n-1}\right)\left[\frac{1}{2}-\frac{1}{1+a_{n-1}^{2} / 2}\right]$
(3) $a_{n}>0$ for all n.
(4) $\sqrt{2}-a_{n+1}=\sqrt{2}-\frac{a_{n}}{2}-\frac{1}{a_{n}}=\frac{\sqrt{2}-a_{n}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{a_{n}}=\left(\sqrt{2}-a_{n}\right)\left[\frac{1}{2}-\frac{1}{\sqrt{2} a_{n}}\right]$. It follows that $a_{n}<\sqrt{2}$ for all n.
(5) It follows that $\frac{1}{2}+\frac{1}{\sqrt{2} a_{n}}<1$ so $\sqrt{2}-a_{n+1} \leq \sqrt{2}-a_{n}$. The sequence is therefore monotone and bounded.

ThEOREM 182. (Squeeze) Suppose that eventually $a_{n} \leq b_{n} \leq c_{n}$ and that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=$ L. Then $\lim _{n \rightarrow \infty} b_{n}=L$.

Proof. Given $\varepsilon>0$ we know that eventually $a_{n} \geq L-\varepsilon$ and $c_{n} \leq L+\varepsilon$. It follows that eventually $L-\varepsilon \leq b_{n} \leq L+\varepsilon$.

Math 121: In-class worksheet for lecture

EXAMPLE 183. Decide whether each sequences converges. If so, determine the limit.
(1) $a_{n}=\frac{1}{n^{2}+1}, n \geq 0$.
(2) $b_{n}=\frac{n}{n^{2}+1}, n \geq 0$
(3) $c_{n}=\frac{n^{2}}{n^{2}+1}, n \geq 0$
(4) $d_{n}=\frac{n^{3} \cos n}{n^{2}+1}, n \geq 0$.

ExErcise 184. Let $x, y \geq 0$. Show that $\frac{x+y}{2} \geq \sqrt{x y}$.

EXERCISE 185. Let $0 \leq a_{0} \leq b_{0}$ be given. Define $a_{n+1}=\sqrt{a_{n} b_{n}}$ and $b_{n+1}=\frac{a_{n}+b_{n}}{2}$.
(1) Show that $0 \leq a_{n} \leq b_{n}$ for all n.
(2) Show that $\left\{a_{n}\right\}_{n=0}^{\infty}$ is non-decreasing and that $\left\{b_{n}\right\}_{n=0}^{\infty}$ is non-increasing.
(3) Show that the sequences are bounded.
(4) (**)Show that $b_{n+1}-a_{n+1} \leq \frac{b_{n}-a_{n}}{2}$
(5) Show that $0 \leq b_{n}-a_{n} \leq \frac{b_{0}-a_{0}}{2^{n}}$.
(6) Conclude that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$. Hint: Apply the Squeeze thm to the conclusion of (5).

5.2. Series

For exam: you need not prove that $\frac{1}{n}, \frac{1}{n^{2}}, q^{n}$ for $|q|<1$ all converge to zero, unless you are directly asked to prove that.

5.2.1. Definitions, exactly summable cases.

DEFINITION 186. A series is a formal sum $\sum_{n=n_{0}}^{\infty} a_{n}$ where $\left\{a_{n}\right\}_{n=n_{0}}^{\infty} \subset \mathbb{R}$ is a sequence. A partial sum of the series is a sum $s_{n}=\sum_{k=n_{0}}^{k=n} a_{k}$. We say that the series converges if $S=\lim _{n \rightarrow \infty} s_{n}$ exists, in which case we call the limit the sum of the series and write $\sum_{n=n_{0}}^{\infty} a_{n}=S$. If the series does not converge we say it diverges.

Example 187. Exactly summable series

- $\sum_{n=0}^{\infty} 0, \sum_{n=0}^{\infty} 1, \sum_{n=0}^{\infty}(-1)^{n}$.
- For $q \neq 1$ consider $\sum_{n=0}^{\infty} q^{n}$. The partial sums (see PS1) are $\frac{q^{n}-1}{q-1}$. If $|q|>1$ we get divergence, if $q<1$ we converge to $\frac{1}{1-q}$.
- Consider $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Partial fractions: $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$ so $s_{n}=1-\frac{1}{n+1}$. In particular the series sum to 1 .

Tail estimates. Suppose $S=\sum_{n=0}^{\infty} a_{n}$. We the use partial sums to approximate S to better and better degree. Specifically, $S=a_{0}+a_{1}+\cdots+a_{N}+\sum_{n=N+1}^{\infty} a_{n}$, so bounding $\left|\sum_{n=N+1}^{\infty} a_{n}\right|$ esimates the error in $S \approx a_{0}+a_{1}+\cdots+a_{N}$. This is called making a tail estimate.

EXAMPLE 188. $\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$. Thus $\log \left(\frac{2}{3}\right)=-\sum_{n=1}^{\infty} \frac{1}{n} 3^{-n}$. If we want to approximate $\log \left(\frac{2}{3}\right)$ to within 10^{-8} we need to find N so that $\left|\sum_{n=N+1}^{\infty} \frac{1}{n} 3^{-n}\right| \leq 10^{-8}$. Note that $\sum_{n=N+1}^{\infty} \frac{1}{n} 3^{-n} \leq \frac{1}{(N+1) 3^{N+1}} \sum_{k=0}^{\infty} 3^{-k}$ so an upper bound on the error is $\frac{1}{(N+1) 3^{N+1}} \frac{1}{1-\frac{1}{3}}=\frac{1}{2(N+1) 3^{N}}$. Now we have $3^{7} \geq 1000$ so $3^{14} \geq 10^{6}$ and $3^{20} \geq 10^{8}$. Smaller values of N are enough. Note that we need about $-\log \varepsilon$ terms for accuracy ε.

EXAMPLE 189. $\frac{\pi}{4}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5} \cdots$. Now to get accuracy ε need about $\frac{1}{\varepsilon}$ terms. Convergence is too slow for the series to be useful.

THEOREM 190. (Arithemtic of series) Suppose $\sum_{n} a_{n}, \sum_{n} b_{n}$ converge, and let $\alpha, \beta \in \mathbb{R}$. Then $\sum_{n}\left(\alpha a_{n}+\beta b_{n}\right)$ converges and its sum is $\alpha \sum_{n} a_{n}+\beta \sum_{n} b_{n}$.

PROOF. $\sum_{n=1}^{T}\left(\alpha a_{n}+\beta b_{n}\right)=\alpha \sum_{n=1}^{T} a_{n}+\beta \sum_{n=1}^{T} b_{n}$. Now let $T \rightarrow \infty$ and use arithmetic of limits.

5.2.2. Positive series and comparison.

DEFINITION 191. Call $\sum_{n} a_{n}$ positive if $a_{n} \geq 0$ for all n.
Proposition 192. A positive series converges iff its partial sums are bounded.
Proof. The partial sums form a monotone sequence.
THEOREM 193 (Comparison test). Let $0 \leq a_{n} \leq b_{n}$. If $\sum_{n} b_{n}<\infty$ then $\sum_{n} a_{n}<\infty$ and $\sum_{n} a_{n} \leq$ $\sum_{n} b_{n}$. Conversely, if $\sum_{n} a_{n}=\infty$ then $\sum_{n} b_{n}=\infty$.

Proof. Bound the partial sums.
Theorem 194 (Integral test). Let $f(x)$ be continuous. Suppose that f is non-increasing and non-negative for $x \geq N$. Then $\sum_{n=N}^{\infty} f(n)$ converges if and only if $\int_{N}^{\infty} f(x) \mathrm{d} x$.

Proof. Consider the following three regions in the plane: $R_{1}=\{(x, y) \mid x \geq N, 0 \leq y \leq f(\lfloor x\rfloor)\}$, $R_{2}=\{(x, y) \mid x \geq N, 0 \leq y \leq f(x)\}, R_{3}=\{(x, y) \mid x \geq N, 0 \leq y \leq f(\lceil x\rceil)\}$. Since $\lfloor x\rfloor \leq x \leq\lceil x\rceil$ for all x we have $f(\lfloor x\rfloor) \geq f(x) \geq f(\lceil x\rceil)$ so $R_{1} \supset R_{2} \supset R_{3}$. Write $R_{i}(T)=\left\{(x, y) \in R_{i} \mid x \leq T\right\}$ for the truncation at T. If $T>N$ is an integer we then have:

$$
\operatorname{Area}\left(R_{1}(T)\right) \geq \operatorname{Area}\left(R_{2}(T)\right) \geq \operatorname{Area}\left(R_{3}(T)\right)
$$

that is

$$
\sum_{n=N}^{T-1} f(n) \geq \int_{N}^{T} f(x) \mathrm{d} x \geq \sum_{n=N+1}^{T} f(n)
$$

Now if the integral converges then $\sum_{n=N+1}^{T} f(n) \leq \int_{N}^{T} f(x) \mathrm{d} x \leq \int_{N}^{\infty} f(x) \mathrm{d} x$ so the partial sums of the series are all bounded and the series converges. Conversely, if the series converges then $\int_{N}^{T} f(x) \mathrm{d} x \leq \sum_{N}^{\infty} f(n)$ for all T so by the monotone convergence principle for functions $\int_{N}^{\infty} f(x) \mathrm{d} x$ exists.

EXAMPLE 195. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges iff $p>1$ since this is the case for $\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{p}}$.
Definition 196. The series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ is called the harmonic series. Its divergence is important.

5.3. Absolute convergence

DEFINITION 197. Say $\sum_{n} a_{n}$ converges absolutely if $\sum_{n}\left|a_{n}\right|<\infty$.
Proposition 198. Absolutely convergent series converge.
Proof. For every n we have $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$ so $0 \leq a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|$. If $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|$ converges then by Theorem 190 so does $\sum_{n=n_{0}}^{\infty}\left(2\left|a_{n}\right|\right)$. By Theorem 193, $\sum_{n=n_{0}}^{\infty}\left(a_{n}+\left|a_{n}\right|\right)$ converges as well. Theorem 190 now gives the convergence of $\sum_{n=n_{0}}^{\infty}\left(\left(a_{n}+\left|a_{n}\right|\right)-\left|a_{n}\right|\right)$.

THEOREM 199 (d'Alambert's criterion). Suppose for all n large enough we have $\left|a_{n+1}\right| \leq$ $\eta\left|a_{n}\right|$ where $0 \leq \eta<1$. Then $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.

PROOF. Suppose that the property holds for $n \geq n_{0}$. Then $\left|a_{n_{0}+k}\right| \leq \eta^{k}\left|a_{n_{0}}\right|$ so $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|$ converges by comparison to the geometric series $\sum_{n=n_{0}}^{\infty}\left|a_{n_{0}}\right| \eta^{n-n_{0}}$.

EXAMPLE 200. $\sum n 2^{-n}, \sum \frac{1}{n 2^{n}}, \sum n!x^{n}, \sum \frac{x^{n}}{n!}$.
DEFINITION 201. $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}, \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$
THEOREM 202. Let $\sum_{n \geq n_{0}} a_{n}$ converge absolutely. Then any rearrangement of it converges, and to the same sum.

THEOREM 203. Let $\sum_{m \geq m_{0}} a_{m}, \sum_{n \geq n_{0}} b_{n}$ converge absolutely with sums A, B respectively. Then $\sum_{m \geq m_{0}, n \geq n_{0}} a_{n} b_{m}$ converges absolutely and its sum is $A B$.

5.3.1. Playing with power series: product of series.

LEMMA 204 (Binomial formula). $(x+y)^{n}=\sum_{k+l=n} \frac{n!}{k!!!} x^{k} y^{l}$.
Proof. Induction.
Theorem 205. $(\cos x)^{2}+(\sin x)^{2}=1$.
Proof. We have

$$
\begin{aligned}
(\cos x)^{2} & =\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}\right)\left(\sum_{l=0}^{\infty} \frac{(-1)^{l} x^{2 l}}{(2 l)!}\right) \\
& =\sum_{k, l=0}^{\infty} \frac{(-1)^{k+l} x^{2(k+l)}}{(2 k)!(2 l)!} \\
& =\sum_{n=0}^{\infty} \sum_{k+l=n} \frac{(-1)^{k+l} x^{2(k+l)}}{(2 k)!(2 l)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \sum_{k+l=n} \frac{1}{(2 k)!(2 l)!} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
(\sin x)^{2} & =\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}\right)\left(\sum_{l=0}^{\infty} \frac{(-1)^{l} x^{2 l+1}}{(2 l+1)!}\right) \\
& =\sum_{k, l=0}^{\infty} \frac{(-1)^{k+l} x^{2(k+l+1)}}{(2 k+1)!(2 l+1)!} \\
& =\sum_{n=1}^{\infty}(-1)^{n-1} x^{2 n} \sum_{k+l=n-1} \frac{1}{(2 k+1)!(2 l+1)!} .
\end{aligned}
$$

Note that $k+l=n-1$ is equivalent to $(2 k+1)+(2 l+1)=2 n$, so we can summarize the calculation as:

$$
\begin{aligned}
& (\cos x)^{2}=1+\sum_{n=1}^{\infty}(-1)^{n} x^{2 n} \sum_{\substack{a+b=2 n \\
a, b \text { even }}} \frac{1}{a!b!} \\
& (\sin x)^{2}=-\sum_{n=1}^{\infty}(-1)^{n} x^{2 n} \sum_{\substack{a+b=2 n \\
a, b \text { odd }}} \frac{1}{a!b!}
\end{aligned}
$$

so

$$
\begin{aligned}
(\cos x)^{2}+(\sin x)^{2} & =1+\sum_{n=1}^{\infty}(-1)^{n} x^{2 n} \sum_{a+b=2 n} \frac{1}{a!b!}(-1)^{b} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n!} x^{2 n} \sum_{a+b=2 n}\binom{2 n}{a} 1^{a}(-1)^{b} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n!} x^{2 n}(1+(-1))^{2 n} \\
& =1 .
\end{aligned}
$$

EXERCISE 206. $\cos (x+y)=\cos x \cos y-\sin x \sin y$. Also, $\sin (x+y)=\sin x \cos y+\cos x \sin y$.
Lemma 207 (More tail estimates). $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=-\frac{1}{2}$.
PROOF. $\frac{\sin x}{x}-1=\sum_{k=1}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k+1)!}$ so if $|x|<1,\left|\frac{\sin x}{x}-1\right| \leq \frac{1}{3!} \sum_{k=1}^{\infty}|x|^{2 k}=\frac{1}{6} \cdot \frac{x^{2}}{1-x^{2}}$. Now $\lim _{x \rightarrow 0} \frac{x^{2}}{1-x^{2}}=0$ and the first claim follows from the squeeze theorem. The second argument is similar.

Proposition 208. $\frac{\mathrm{d}}{\mathrm{d} x} \sin x=\cos x, \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x=-\sin x$.
PROOF. $\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h}=\lim _{h \rightarrow 0}\left[\frac{\cos h-1}{h} \sin x+\frac{\sin h}{h} \cos x\right]=$ $\sin x\left(\lim _{h \rightarrow 0} \frac{\cosh -1}{h^{2}}\right)\left(\lim _{h \rightarrow 0} h\right)+\cos x\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)=\cos x$. The calculation for cosine is similar.

COROLLARY 209. The functions $\cos x, \sin x$ are everywhere infinitely differentiable, hence continuous.

DEFINITION 210. $\frac{\pi}{2} \xlongequal{\text { def }} \min \{x>0 \mid \cos x=0\}$.
The set is non-empty since $\cos 0=1$ while $\cos 2<0$ (homework).
THEOREM 211. $\cos (x+2 \pi)=\cos x, \sin (x+2 \pi)=\sin x$ and there is no smaller period.
Proof. The first claim follows from the addition rule and the half-angle formula. For the second claim note that a period must divide 2π. But $\cos x$ is non-zero in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (it is even, and has no zeroes before $\frac{\pi}{2}$ by definition). It follows that the shortest possible period is π, which isn't the case since $\cos (x+\pi)=-\cos x$.

5.4. Power series and Taylor series

5.4.1. Power series.

DEFINITION 212. A power series is a series of the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. The a_{n} are called the coefficients and x_{0} is called the centre. The set of x where the series converges is called the interval of convergence.

Proposition 213. Suppose that the power series converges at some $x_{1} \neq x_{0}$. Then it converges absolutely in $\left\{x\left|\left|x-x_{0}\right|<\left|x_{1}-x_{0}\right|\right\}\right.$.

PROOF. Since $\sum_{n=0}^{\infty} a_{n}\left(x_{1}-x_{0}\right)^{n}$ converges, we have $\lim _{n \rightarrow \infty} a_{n}\left(x_{1}-x_{0}\right)^{n}=0$. In particular, this sequence is bounded. Suppose $\left|a_{n}\left(x_{1}-x_{0}\right)^{n}\right| \leq A$ for all n. Then $\left|a_{n}\left(x-x_{0}\right)^{n}\right| \leq A\left|\frac{x-x_{0}}{x_{1}-x_{0}}\right|^{n}$. If $\left|x-x_{0}\right|<\left|x_{1}-x_{0}\right|$ then $\sum_{n=0}^{\infty}\left|\frac{x-x_{0}}{x_{1}-x_{0}}\right|^{n}$ converges, so the original series converges absolutely.

COROLLARY 214. $\left\{x \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right.$ converges $\}$ has one of the following forms:
(1) $\left\{x_{0}\right\}$
(2) For some $R>0,\left(x_{0}-R, x_{0}+R\right) \cup E$ where $E \subset\left\{x_{0}-R, x_{0}+R\right\}$
(3) \mathbb{R}

DEFINITION 215. R is called the radius of convergence.
EXAMPLE 216. Suppose $\sum_{n=0}^{\infty} a_{n}(x-3)^{n}$ converges at $x=-5$. Then it must converge absolutely at $x=7$, but nothing is known about $x=15$.

THEOREM 217. Suppose $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists in the extended sense. Then $R=\frac{1}{L}$ (including the cases $L=0, L=\infty$).

Proof. Immediate.
EXAMPLE 218. Consider $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ which converges for $|x|<1$. We can also expand around other points. For example,

$$
\frac{1}{1-x}=\frac{1}{(5-x)-4}=-\frac{1}{4} \cdot \frac{1}{1-\frac{5-x}{4}}=-\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{5-x}{4}\right)^{n}=\sum_{n=0}^{\infty}(-4)^{-n-1}(x-5)^{n}
$$

which converges if $\left|\frac{5-x}{4}\right|<1$, that is if $x \in(1,9)$.
EXAMPLE 219. Consider $\sum_{n=0}^{\infty} \frac{1}{4^{k}}\binom{2 k}{k} x^{k} .\binom{2 k+1}{k+1} 4^{-k-1} /\binom{2 k}{k} 4^{-k}=\frac{2(2 k+1)}{4(k+1)}=\frac{k+\frac{1}{2}}{k+1} \rightarrow 1$ so the radius of convergence is 1 .
5.4.2. Properties of power series. Fix a power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ with radius of convergence $R>0$ (possibly $R=\infty$). Write $f(x)$ for the sum of the series at a point x where it convergence.

THEOREM 220. $f(x)$ is continuous on the open interval $\left(x_{0}-R, x_{0}+R\right)$.
Proof. It is enough to show continuity on every proper subinterval $\left(x_{0}-S, x_{0}+S\right)$ where $S<R$. Accordingly fix S and choose x_{1} such that $x_{0}+S<x_{1}<x_{0}+r$. Then the series converges at x_{1} so there is N so that if $n \geq N\left|a_{n}\left(x_{1}-x_{0}\right)^{n}\right| \leq 1$. Set $\lambda=\frac{S}{x_{1}-x_{0}}$; by assumption $0<\lambda<1$.

Truncate the sum at T, that is write

$$
f(x)=\sum_{n=0}^{T} a_{n}\left(x-x_{0}\right)^{n}+\sum_{n=T+1}^{\infty} a_{n}\left(x-x_{0}\right)^{n} .
$$

The idea is that the first sum is a polynomial, hence a continuous function, and the second sum is small by the proof of convergence above. In detail, suppose $T \geq N$. Then

$$
\begin{aligned}
\left|\sum_{n=T+1}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right| & \leq \sum_{n=T+1}^{\infty}\left|a_{n}\left(x_{1}-x_{0}\right)^{n}\right|\left|\frac{x-x_{0}}{x_{1}-x_{0}}\right|^{n} \\
& \leq \sum_{n=T+1}^{\infty} 1 \cdot \lambda^{n} \\
& =\frac{\lambda^{T+1}}{1-\lambda}
\end{aligned}
$$

In particular, given $\varepsilon>0$ there is T large enough so that $\frac{\lambda^{T+1}}{1-\lambda}<\frac{\varepsilon}{3}$. Now given $x \in\left(x_{0}-S, x_{0}+S\right)$ the continuity of the polynomial $\sum_{n=0}^{T} a_{n}\left(x-x_{0}\right)^{n}$ at x gives $\delta>0$ so that if $|y-x|<\delta$ then
$\left|\sum_{n=0}^{T} a_{n}\left(x-x_{0}\right)^{n}-\sum_{n=0}^{T} a_{n}\left(y-x_{0}\right)^{n}\right|<\frac{\varepsilon}{3}$ (we suppose that $\boldsymbol{\delta}$ is small enough so that $(x-\boldsymbol{\delta}, x+\boldsymbol{\delta}) \subset$ $\left(x_{0}-S, x_{0}+S\right)$). Then

$$
\begin{aligned}
|f(x)-f(y)| & \leq\left|\sum_{n=0}^{T} a_{n}\left(x-x_{0}\right)^{n}-\sum_{n=0}^{T} a_{n}\left(y-x_{0}\right)^{n}\right|+\left|\sum_{n=T+1}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right|+\left|\sum_{n=T+1}^{\infty} a_{n}\left(y-x_{0}\right)^{n}\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{aligned}
$$

It follows that $\lim _{y \rightarrow x} f(y)=f(x)$, that is that f is continuous at x.
REMARK 221. It is a Theorem of Abel's that if the series converges at an endpoint then the function is continuous at that point as well.

THEOREM 222 (Integrate term-by-term). The series $F(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}=\sum_{n=1}^{\infty} \frac{a_{n-1}}{n}\left(x-x_{0}\right)^{n+1}$ has the same radius of convergence as f and for $x \in\left(x_{0}-R, x_{0}+R\right)$ we have $\int_{x_{0}}^{x} f(t) \mathrm{d} t=F(x)$.

Proof. If $\left|x-x_{0}\right|<R$ then $\left|\frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}\right| \leq\left|x-x_{0}\right|\left|a_{n}\left(x-x_{0}\right)^{n}\right|$ since $\frac{1}{n+1} \leq 1$. We know $\sum_{n=0}^{\infty}\left|a_{n}\left(x-x_{0}\right)^{n}\right|$ converges absolutely, so the series $F(x)$ also converges. Conversely, suppose that $\sum_{n=0}^{\infty}\left|\frac{a_{n}}{n+1}\left(x_{1}-x_{0}\right)^{n+1}\right|$ converges. Then if $\left|x-x_{0}\right|<\left|x_{1}-x_{0}\right|$, we have $\left|a_{n}\left(x-x_{0}\right)^{n}\right| \leq\left|\frac{a_{n}}{n+1}\left(x_{1}-x_{0}\right)^{n}\right|(n+$ 1) $\left|\frac{x-x_{0}}{x_{1}-x_{0}}\right|^{n}$. We know that $\left|\frac{a_{n}}{n+1}\left(x_{1}-x_{0}\right)^{n}\right|$ is bounded, and that $\sum_{n=0}^{\infty}(n+1) \lambda^{n}$ converges if $|\lambda|<1$, so $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges absolutely. It follows that the radius of convergence of f is at least that of F, so both series have the same radius. Finally, given $x \in\left(x_{0}-R, x_{0}+R\right)$ write $S=\left|x-x_{0}\right|<R$, let A be such that $\left|a_{n}\left(x_{0}+\frac{S+R}{2}\right)^{n}\right| \leq A$ (the series converges at $x_{0}+\frac{S+R}{2}$) and write $\lambda=\frac{2 S}{S+R}<1$. Then:

$$
\left|f(t)-\sum_{n=0}^{T} a_{n}\left(t-x_{0}\right)^{n}\right| \leq \sum_{n=T+1}^{\infty} A \lambda^{n} \leq \frac{A \lambda^{T+1}}{1-\lambda}
$$

It follows that

$$
\begin{aligned}
\left|\int_{x_{0}}^{x} f(t) \mathrm{d} t-\sum_{n=0}^{T} \frac{a_{n}}{n+1} x^{n+1}\right| & =\left|\int_{x_{0}}^{x} f(t) \mathrm{d} t-\int_{x_{0}}^{x}\left(\sum_{n=0}^{T} a_{n}\left(t-x_{0}\right)^{n}\right) \mathrm{d} t\right| \\
& \leq\left|\int_{x_{0}}^{x}\right| f(t)-\sum_{n=0}^{T} a_{n}\left(t-x_{0}\right)^{n}|\mathrm{~d} t| \\
& \leq\left|x-x_{0}\right| A \frac{\lambda^{T+1}}{1-\lambda} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \lambda^{n}=0$ we see that $\int_{x_{0}}^{x} f(t) \mathrm{d} t=\lim _{T \rightarrow \infty} \sum_{n=0}^{T} \frac{a_{n}}{n+1} x^{n+1}=F(x)$.
THEOREM 223 (Differentiation term-by-term). The series $G(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+$ 1) $a_{n+1} x^{n}$ has the same radius of convergence as f and for $x \in\left(x_{0}-R, x_{0}+R\right)$ we have $f^{\prime}(x)=$ $G(x)$.

Proof. Since the series of f is obtained from that of G using term-by-term integration, the previous Theorem shows that both series have the same radius of convergence and that $f(x)=$ $\int_{x_{0}}^{x} G(t) \mathrm{d} t$. That f is differentiable and the formula $f^{\prime}(x)=G(x)$ now follow the continuity of G in its interval of convergence and from the fundamental theorem of calculus.

COROLLARY 224. Suppose $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ has a positive radius of convergence. Then f is infinitely differentiable in $\left(x_{0}-R, x_{0}+R\right)$ and $a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$.

Proof. Both claims follow by induction, also using $a_{0}=f(0)$.
Corollary 225. Suppose $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, g(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$ hold for $x \in$ $\left(x_{0}-S, x_{0}+S\right), S>0$.
(1) Suppose that $f(x)=g(x)$ on this interval containing x_{0}. Then $a_{n}=b_{n}$ for all n and $f=g$.
(2) $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is the Taylor series of f.

5.4.3. Operation on power series.

THEOREM 226. Suppose $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, g(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$ have positive radii of convergence R, R^{\prime} respectively.
(1) Let $\alpha, \beta \in \mathbb{R}$. Then $\sum_{n=0}^{\infty}\left(\alpha a_{n}+\beta b_{n}\right)\left(x-x_{0}\right)^{n}$ has radius of convergence at least $\min \left\{R, R^{\prime}\right\}$ and in that interval its sum equals $\alpha f(x)+\beta g(x)$.
(2) $\sum_{n=0}^{\infty}\left(\sum_{k+l} a_{k} b_{l}\right)\left(x-x_{0}\right)^{n}$ has radius of convergence at least $\min \left\{R, R^{\prime}\right\}$ and in that interval its sum equals $f(x) g(x)$.

Proof. (1) Theorem on linear combination of series; (2) Theorem on multiplication of absolutely convergent series.

THEOREM 227 (Composition). Suppose $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}, g(t)=x_{0}+\sum_{k=1}^{\infty} b_{k}(t-$ $\left.t_{0}\right)^{k}$ have positive radii of convergence R, S respectively (note that $b_{0}=x_{0}$!). Then $f(g(t))=$ $\sum_{m=0}^{\infty} c_{m}\left(t-t_{0}\right)^{m}$ in an interval about t_{0}, where $c_{m}=\sum_{n=0}^{m} a_{n} d_{n, m}$ and $d_{n, m}$ is the coefficient of $\left(t-t_{0}\right)^{m}$ in $\left(\sum_{k=1}^{m} b_{k}\left(t-t_{0}\right)^{k}\right)^{m}$.

Corollary 228. If we wish to expand $f(g(t))$ to mth order it suffices to truncate f, g to mth order before the substitution.

Math 121: In-class worksheet

Example 229. Series to memorize:
(1) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
(2) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(3) $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}, \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$
(4) $\log (1+x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$
(5) $\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$.

EXERCISE 230. Sum the following series
(1) $\sum_{n=1}^{\infty} \frac{x^{n}}{n+3}$
(2) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}+3 n}$
(3) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+2)!} \frac{1}{2!\cdot 2}-\frac{1}{4!\cdot 2^{3}}+\frac{1}{6!\cdot 2^{5}}-\frac{1}{8!\cdot 2^{7}}+\cdots$

EXERCISE 231. Expand the following functions to fifth order about zero
(1) $e^{\sin x}$
(2) $\frac{\sin \left(x^{2}\right)-(\arctan x)^{2}}{x^{4}}$
(3) $e^{2 x} \cos \left(x^{2}\right)$

Math 121: Example Solution

Problem 232. Let X be a random variable with normal (Gaussian) distribution. Let $\Phi(t)$ be the probability that X is within t standard deviations from its mean. Calculate $\Phi(t)$ to within $\frac{1}{1000}$ where
(1) $t=1$
(2) $t=2$

Solution:

CHAPTER 6

Examples from Physics

[313 PS2 for an example of Taylor expansion]

6.1. van der Waals equation

Ideal gas:

$$
P=\rho k T
$$

where ρ is the particle density (particles per unit volume), k is the Boltzmann constant, and T is the temperature.

Better version:

$$
P+a^{\prime} \rho^{2}=\frac{\rho k T}{1-\rho b^{\prime}}
$$

Here b^{\prime} is the volume of a single particle, and a^{\prime} is a measure of the attraction between particles. Say we want to understand how b affects the density. How do we do this? Taylor expansion!

$$
P=(\rho k T)\left[1+\left(\rho b^{\prime}\right)+\left(\rho b^{\prime}\right)^{2}+\cdots\right]-a^{\prime} \rho^{2}
$$

6.2. Planck's Law

- Blackbody problem
- Spectral density
- Classical calculation (Rayleigh-Jeans) give the spectral density as

$$
B_{\lambda}(T) d \lambda=2 c k T \frac{\mathrm{~d} \lambda}{\lambda^{4}}
$$

or $\left(\lambda=\frac{c}{v}\right.$ so $\left.d \lambda=-\frac{c}{v^{2}}\right)$

$$
B_{v}(T)=\frac{2 k T}{c^{2}} v^{2} \mathrm{~d} v
$$

- Problem: the integral diverges (infrared catastrophe); predicts too much power at small scales.
- Planck: better formula is

$$
\begin{aligned}
B_{\lambda}(T) d \lambda & =\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{\lambda k T}}-1} \mathrm{~d} \lambda \\
B_{v}(T) & =\frac{2 h v^{3}}{c^{2}} \frac{1}{e^{\frac{h v}{k T}}-1} \mathrm{~d} \nu
\end{aligned}
$$

Physical derivation: Consider a specific oscillator in the box, of energy quantum E. The probability that there are n photos of energy E is proportional to

$$
e^{-\beta n E}
$$

We first find the normalizing constant, giving the probability exactly

$$
\left(1-e^{-\beta E}\right) e^{-\beta n E}
$$

The expected energy of a specific oscillator is therefore

$$
\begin{aligned}
\left(1-e^{-\beta E}\right) \sum_{n=0}^{\infty} n E e^{-\beta n E} & =-\left(1-e^{-\beta E}\right) \frac{\partial}{\partial \beta} \sum_{n=0}^{\infty} e^{-\beta n E} \\
& =\left(1-e^{-\beta E}\right) \frac{E e^{-\beta E}}{\left(1-e^{-\beta E}\right)^{2}}= \\
& =\frac{E}{e^{\beta E}-1}
\end{aligned}
$$

We now suppose with Planck that $E=h v$; in the final expression for the density v counts polarizations and $v^{2} \mathrm{~d} v$ is the density of states.

$$
\frac{2 h v^{3}}{c^{2}} \frac{1}{e^{\frac{h v}{k T}}-1}
$$

Problem 233. Find peak (at $\frac{2.82}{\beta}$), total intensity $\left(\propto T^{4}\right)$

Bibliography

