MATH 121 - EXERCIZE SET ON INTEGRALS DUE IN CLASS ON WEDNESDAY, APRIL 4TH

1. STANDARD PROBLEMS

1.1. Calculate the following integrals. You will be primarily graded on the correctness of your results.

- (1) $\int_0^1 (x^3 2x + 5) dx$
- (2) $\int x\sqrt{x^2+a^2}\,\mathrm{d}x$
- (3) $\int \frac{x}{\sqrt{x^2 + a^2}} \cos\left(\sqrt{x^2 + a^2}\right) dx$

(4)
$$\int \frac{x}{\sqrt{x}} dx$$

- (4) $\int \frac{x}{\sqrt{1-x^4}} dx$ (5) $\int_0^{\pi/2} e^x \cos x dx$
- (6) $\int e^{\sqrt{x}} dx$

- (7) $\int \frac{x+5}{x^3-2x^2+x} dx$ (8) $\int x^3 \log x dx$ (9) $\int \frac{dx}{(x+\frac{1}{x})\log(1+x^2)}$
- (10) $\int \arctan x \, dx$

2. HYPERBOLIC TRIG FUNCTIONS

The following substitution technique is superior to trig substitutions for expressions of the form $\sqrt{x^2 \pm a^2}$. Let $\cosh t = \frac{e^t + e^{-t}}{2}$, $\sinh t = \frac{e^t - e^{-t}}{2}$, $\tanh x = \frac{\sinh x}{\cosh x}$. The following points are not for submission.

- Verify for yourself that $\cosh t \ge 1$ for all t and that $\cosh t$ is an even function while $\sinh t$ is odd.
- Verify that $(\cosh t)' = \sinh t$ and that $(\sinh t)' = \cosh t$.
- Verify the key identity $\cosh^2 t \sinh^2 t = 1$, that is $\cosh^2 t = 1 + \sinh^2 t$ and $\sinh^2 t = \cosh^2 t 1$.
- Express the equation $x = \cosh t$. as a quadratic in e^t and verify that $t = \pm \log \left(x + \sqrt{x^2 1} \right) = \log \left(x \pm \sqrt{x^2 1} \right)$.
- Conclude similarly that $\operatorname{arcsinh} x = \log(x + \sqrt{x^2 + 1})$.

Calculate the following integrals. You will be primarily graded on the correctness of your results.

(1)
$$\int \sqrt{1+x^2} \, \mathrm{d}x$$

(2)
$$\int \frac{1}{\sqrt{1-x}} dx$$

(2) $\int \frac{1}{\sqrt{4+x^2}} dx$ (3) $\int x^2 \sqrt{x^2 - a^2} dx$

3. A DIFFICULT CHALLENGE

Evaluate the following integral.

(1) $\int_0^\infty \frac{\log x}{1+x^2} \, \mathrm{d}x.$