Math 121: Problem set 11 (due 4/4/12)

Practice problems (not for submission!)

Sections 9.5-9.7

Sequences and Series

1. Find the center, radius, and interval of convergence for the following series:
(a) $\sum_{n=0}^{\infty} \frac{10 e^{n}+5}{n^{n}} x^{n}$
(b) $\sum_{n=0}^{\infty} \frac{\sqrt{n+5}}{4^{n}}(3 x-1)^{n}$
2. Evaluate the following sums:
(a) $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n 3^{n}}$.
(b) $\sum_{n=0}^{\infty} \frac{1}{n^{2} 2^{n}}$ (express your answer as an integral).
(* c) $x^{3}-\frac{x^{13}}{3!\cdot 9}+\frac{x^{23}}{5!\cdot 81}-\frac{x^{33}}{7!\cdot 729}+\cdots$
(*d) $1+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n}$.
PRAC $\sum_{n=0}^{\infty}\left(n^{2}-3 n+5\right) x^{n}$ where $|x|<1$.
3. Expand
(a) $\frac{1}{x^{3}}$ about $x_{0}=2$ (Hint)
(b) $\frac{x}{1+3 x^{2}}$ in powers of x.
(c) $\int_{1}^{1+x} \frac{\log t}{t-1} \mathrm{~d} t$ in powers of x.

PRAC $\frac{1}{x^{3}+x^{2}-5 x+3}$ in powers of x.
4. (Taylor polynomials)
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin (\sin x)-x \cos \left(\frac{7}{3} x\right)}{\arctan x\left(e^{x}-1-x\right)^{2}}$
(b) Find r so that $A=\lim _{x \rightarrow 0} x^{r} \frac{e^{\sin x}-e^{x}}{e^{\cos x-1}}$ exists and is non-zero, and evaluate A.
5. Define a sequence by $a_{0}=a_{1}=1$ and $a_{n+2}=\frac{2 n-1}{(n+1)(n+2)} a_{n}$ if $n \geq 0$.
(a) Show that the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for all x.
(b) Let $f(x)$ denote the sum of the series in part (a). Show that $f^{\prime \prime}(x)-2 x f^{\prime}(x)+f=0$.

Hint for 2(c): Differentiate the unknown function.
Hint for 3(a): Expand $\frac{1}{x}$ first, then differentiate.
Hint for 3(d): Partial fractions.

