Math 121: Problem set 9 (due 20/3/12)

Practice problems (not for submission!)
Sections 9.1: All problems.

Limits of Sequences

1. Choose an arbitrary real number a_{0} and consider the sequence given by $a_{n+1}=\cos \left(a_{n}\right)$.

DO IT! Input a number into your calculator and repeatedly press the cosine button. Now retry with a different starting point.
SUPP Show that there a unique real number ξ so that $\cos \xi=\xi$, and that $0 \leq \xi \leq 1$.
(b) Show that for $n \geq 2,0 \leq a_{n} \leq 1$.
(c) For $n \geq 2$ show that $\left|a_{n+1}-\xi\right| \leq \sin (1)\left|a_{n}-\xi\right|$.

Hint on other side.
(d) Show that $\left|a_{n+2}-\xi\right| \leq(\sin (1))^{n}\left|a_{2}-\xi\right|$.
(e) Show that $\lim _{n \rightarrow \infty} a_{n}=\xi$.
2. (Final exam 2009) Define a sequence by a_{n} by $a_{0}=3$ and $a_{n+1}=\frac{2}{3} a_{n}+\frac{4}{3 a_{n}}$.
(a) Show that $\frac{4}{3} \leq a_{n} \leq 3$ for all n.
[Part (b) in the exam: Show that the sequence converges and evaluate the limit]
(b) Suppose the $L=\lim _{n \rightarrow \infty} a_{n}$ existed. Find its value.
(c) Using the value from part (b), show that $\frac{1}{6}=\frac{2}{3}-\frac{1}{2}<\frac{a_{n+1}-L}{a_{n}-L} \leq \frac{2}{3}$ for all n.

Hint on other side.
(d) Show that $0<a_{n}-L \leq\left(\frac{2}{3}\right)^{n}$ for all n; conclude that $\lim _{n \rightarrow \infty} a_{n}$ exists and equals L. Hint: You can either use the definition of the limit or just quote a theorem.
3. Evaluate the following limits:
(a) $\lim _{n \rightarrow \infty} \sqrt[n]{2^{n}+3^{n}}$.

Hint on other side.
(b) $\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{k} b_{i}^{n}\right)^{1 / n}$ where b_{1}, \ldots, b_{k} are fixed positive real numbers.
4. Let $a_{0}=1$ and $b_{0}=2$. Recusively set $a_{n+1}=\sqrt{a_{n} b_{n}}, b_{n+1}=\frac{a_{n}+b_{n}}{2}$.

DO IT! Use a calculator or computer to find the first few values of the sequence. At what point does $b_{n}-a_{n}=0$ hold within the precision of your calculator?
(a) Show that $b_{n+1}-a_{n+1}=\frac{\left(a_{n}-b_{n}\right)^{2}}{2\left(\sqrt{a_{n}}+\sqrt{b_{n}}\right)^{2}} \leq \frac{\left(a_{n}-b_{n}\right)^{2}}{8}$.
(b) Show that $b_{n}-a_{n} \leq 2^{-2^{n}}$ for $n \geq 1$. Find N so that if $n \geq N$ then $b_{n}-a_{n} \leq 10^{-100}$. RMK Convergence is very fast here.

Hint for $1(\mathrm{c}): \sin (1)$ is an upper bound for the derivative of $\cos x$ in $[0,1]$.
Hint for 2(c): subtract $L=\frac{2}{3} L+\frac{4}{3 L}$ from the recursion relation and use $\frac{1}{a_{n} L}<\frac{1}{2}$ (why?)
Hint for $3(\mathrm{a})$: $3^{n} \leq 2^{n}+3^{n} \leq 2 \cdot 3^{n}$; now use squeeze.

Exam practice: A continued fraction

A. Define a sequence by $a_{0}=1$ and $a_{n+1}=\frac{1}{1+a_{n}}$.
(a) [Low hanging fruit I] Show that $0<a_{n}<1$ for all $n \geq 1$.
(b) [Low hanging fruit II] Suppose $L=\lim _{n \rightarrow \infty} a_{n}$ exists; find it!
(c) Show that $a_{n+1}-a_{n}=-\frac{a_{n}-a_{n-1}}{\left(1+a_{n}\right)\left(1+a_{n-1}\right)}$ for all n.
(d) Show that $a_{1}<a_{3}<a_{5}<\cdots<a_{2 k-1}<a_{2 k+1}<\cdots<a_{2 k}<a_{2 k-2}<\cdots<a_{4}<a_{2}<a_{0}$. Hint: induction.
(e) Show that $A=\lim _{k \rightarrow \infty} a_{2 k+1}$ and $B=\lim _{k \rightarrow \infty} a_{2 k}$ exist and that $A \leq B$.
(*f) Show that $\left|a_{n+1}-a_{n}\right| \leq \frac{\left|a_{n}-a_{n-1}\right|}{\left(1+\frac{1}{2}\right)^{2}}$ if $n \geq 2$. Use that to show that $\lim _{n \rightarrow \infty}\left|a_{n+1}-a_{n}\right|=0$ and hence that $A=B$, so that $\lim _{n \rightarrow \infty} a_{n}$ exists.
RMK The limit you have found is normally written as $\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}$

Supplementary problem: Defining raising to powers

B. Let $x \in \mathbb{R}$. Define $x^{0}=1$ and $x^{n+1}=x \cdot x^{n}$ for all integral $n \geq 0$.
(a) Show that $x^{a+b}=x^{a} x^{b}$ for all natural numbers a, b.
(b) Show that $\left(x^{a}\right)^{b}$ for all natural numbers a, b.
(c) Show that $(x y)^{a}=x^{a} y^{a}$ for natural numbers a.
(d) Show that if $0<x<y$ and a is a natural number then $0<x^{a}<y^{a}$. Conclude that if $x \neq 0$ then $x^{a} \neq 0$ for all a.
C. Let $x \in \mathbb{R}$ be non-zero. If n is a negative integer set $x^{n}=\frac{1}{x^{n}}$.
(a) Show that $x^{a+b}=x^{a} x^{b}$ for all $a, b \in \mathbb{Z}$.
(b) Show that $\left(x^{a}\right)^{b}$ for all $a, b \in \mathbb{Z}$.
(c) Show that $(x y)^{a}=x^{a} y^{a}$ for all $a \in \mathbb{Z}$.
(d) Show that if $0<x<y$ and a is a negative integer then $x^{a}>y^{a}>0$.
D. Fix $n \geq 1$ and consider the function $f(x)=x^{n}$ for $x \geq 0$.
(a) Show that f is continuous on its domain.
(b) Show that f is strictly monotone.
(c) Show that for any $y \geq 0$ there are $0 \leq x_{1} \leq x_{2}$ so that $f\left(x_{1}\right) \leq y \leq f\left(x_{2}\right)$.
(d) Conclude that every non-negative real has a unique nth root.
E. For a rational number $\frac{p}{q}$ where p, q are integers with q positive and for $x \geq 0$ set $x^{p / q}=\left(x^{p}\right)^{1 / q}$ where x^{p} was defined in part C and q th roots are defined as in part D . Show that properies (a)-(d) of problems B,C hold where a, b range over the rationals.
F. Let $b \geq 0$ be a fixed real number, and consider the function $g(r)=b^{r}$ for r rational.
(a) Show that g is monotone.
(**b) Given $\varepsilon>0$ there is $\delta>0$ so that if $|r|<\delta$ then $\left|b^{r}-1\right|<\varepsilon$.
(*c) Conclude that the function g has no "jumps" and is hence extends to a continuous function defined for every real number.
(d) Show that the exponentiation b^{x} as defined in part (c) satisfies the properties of $\mathrm{C}(\mathrm{a})-\mathrm{C}(\mathrm{d})$.
(e) Show that $b \mapsto b^{x}$ is continuous for fixed x.

