Math 121: Problem set 9 (due 20/3/12)

Practice problems (not for submission!)

Sections 9.1: All problems.

Limits of Sequences

- 1. Choose an arbitrary real number a_0 and consider the sequence given by $a_{n+1} = \cos(a_n)$.
 - DO IT! Input a number into your calculator and repeatedly press the cosine button. Now retry with a different starting point.

SUPP Show that there a unique real number ξ so that $\cos \xi = \xi$, and that $0 \le \xi \le 1$.

- (b) Show that for $n \ge 2, 0 \le a_n \le 1$.
- (c) For $n \ge 2$ show that $|a_{n+1} \xi| \le \sin(1) |a_n \xi|$. *Hint on other side.*
- (d) Show that $|a_{n+2} \xi| \le (\sin(1))^n |a_2 \xi|$.
- (e) Show that $\lim_{n\to\infty} a_n = \xi$.

2. (Final exam 2009) Define a sequence by a_n by $a_0 = 3$ and $a_{n+1} = \frac{2}{3}a_n + \frac{4}{3a_n}$.

- (a) Show that $\frac{4}{3} \le a_n \le 3$ for all *n*. [Part (b) in the exam: Show that the sequence converges and evaluate the limit]
- (b) Suppose the $L = \lim_{n \to \infty} a_n$ existed. Find its value.
- (c) Using the value from part (b), show that $\frac{1}{6} = \frac{2}{3} \frac{1}{2} < \frac{a_{n+1}-L}{a_n-L} \leq \frac{2}{3}$ for all *n*. *Hint on other side*.
- (d) Show that $0 < a_n L \le \left(\frac{2}{3}\right)^n$ for all *n*; conclude that $\lim_{n\to\infty} a_n$ exists and equals *L*. *Hint*: You can either use the definition of the limit or just quote a theorem.
- 3. Evaluate the following limits:
 - (a) $\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$.
 - (b) $\lim_{n \to \infty} (\sum_{i=1}^{k} b_i^n)^{1/n}$ where b_1, \dots, b_k are fixed positive real numbers.
- 4. Let a₀ = 1 and b₀ = 2. Recusively set a_{n+1} = √a_nb_n, b_{n+1} = a_{n+b_n}/2.
 DO IT! Use a calculator or computer to find the first few values of the sequence. At what point does b_n − a_n = 0 hold within the precision of your calculator?
 - (a) Show that $b_{n+1} a_{n+1} = \frac{(a_n b_n)^2}{2(\sqrt{a_n} + \sqrt{b_n})^2} \le \frac{(a_n b_n)^2}{8}$.

(b) Show that $b_n - a_n \le 2^{-2^n}$ for $n \ge 1$. Find N so that if $n \ge N$ then $b_n - a_n \le 10^{-100}$. RMK Convergence is very fast here.

Hint for 1(c): sin(1) is an upper bound for the derivative of cos x in [0, 1]. Hint for 2(c): subtract $L = \frac{2}{3}L + \frac{4}{3L}$ from the recursion relation and use $\frac{1}{a_nL} < \frac{1}{2}$ (why?) Hint for 3(a): $3^n \le 2^n + 3^n \le 2 \cdot 3^n$; now use squeeze.

Exam practice: A continued fraction

- A. Define a sequence by $a_0 = 1$ and $a_{n+1} = \frac{1}{1+a_n}$.
 - (a) [Low hanging fruit I] Show that $0 < a_n < 1$ for all $n \ge 1$.
 - (b) [Low hanging fruit II] Suppose $L = \lim_{n \to \infty} a_n$ exists; find it!

 - (c) Show that $a_{n+1} a_n = -\frac{a_n a_{n-1}}{(1+a_n)(1+a_{n-1})}$ for all n. (d) Show that $a_1 < a_3 < a_5 < \cdots < a_{2k-1} < a_{2k+1} < \cdots < a_{2k} < a_{2k-2} < \cdots < a_4 < a_2 < a_0$. Hint: induction.
 - (e) Show that $A = \lim_{k \to \infty} a_{2k+1}$ and $B = \lim_{k \to \infty} a_{2k}$ exist and that $A \le B$.
 - (*f) Show that $|a_{n+1} a_n| \le \frac{|a_n a_{n-1}|}{(1 + \frac{1}{2})^2}$ if $n \ge 2$. Use that to show that $\lim_{n \to \infty} |a_{n+1} a_n| = 0$

and hence that A = B, so that $\lim_{n \to \infty} a_n$ exists. RMK The limit you have found is normally written as

$$\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\cdot}}}}}$$

Supplementary problem: Defining raising to powers

- B. Let $x \in \mathbb{R}$. Define $x^0 = 1$ and $x^{n+1} = x \cdot x^n$ for all integral $n \ge 0$.
 - (a) Show that $x^{a+b} = x^a x^b$ for all natural numbers a, \overline{b} .
 - (b) Show that $(x^a)^b$ for all natural numbers *a*, *b*.
 - (c) Show that $(xy)^a = x^a y^a$ for natural numbers *a*.
 - (d) Show that if 0 < x < y and a is a natural number then $0 < x^a < y^a$. Conclude that if $x \neq 0$ then $x^a \neq 0$ for all *a*.
- C. Let $x \in \mathbb{R}$ be non-zero. If *n* is a negative integer set $x^n = \frac{1}{x^n}$.
 - (a) Show that $x^{a+b} = x^a x^b$ for all $a, b \in \mathbb{Z}$.
 - (b) Show that $(x^a)^b$ for all $a, b \in \mathbb{Z}$.
 - (c) Show that $(xy)^a = x^a y^a$ for all $a \in \mathbb{Z}$.
 - (d) Show that if 0 < x < y and *a* is a negative integer then $x^a > y^a > 0$.
- D. Fix n > 1 and consider the function $f(x) = x^n$ for x > 0.
 - (a) Show that f is continuous on its domain.
 - (b) Show that f is strictly monotone.
 - (c) Show that for any y > 0 there are $0 < x_1 < x_2$ so that $f(x_1) < y < f(x_2)$.
 - (d) Conclude that every non-negative real has a unique *n*th root.
- E. For a rational number $\frac{p}{q}$ where p, q are integers with q positive and for $x \ge 0$ set $x^{p/q} = (x^p)^{1/q}$ where x^p was defined in part C and qth roots are defined as in part D. Show that properies (a)-(d) of problems B,C hold where a, b range over the rationals.
- F. Let b > 0 be a fixed real number, and consider the function $g(r) = b^r$ for r rational. (a) Show that g is monotone.
 - (**b) Given $\varepsilon > 0$ there is $\delta > 0$ so that if $|r| < \delta$ then $|b^r 1| < \varepsilon$.
 - (*c) Conclude that the function g has no "jumps" and is hence extends to a continuous function defined for every real number.
 - (d) Show that the exponentiation b^x as defined in part (c) satisfies the properties of C(a)-C(d).
 - (e) Show that $b \mapsto b^x$ is continuous for fixed x.