Math 121: Problem set 8 (due 13/3/12)

Practice problems (not for submission!)
Chapter 8: Problems on plotting and lengths. Problems on polar curves.
Sections 9.1: All problems.

Parametric curves

1. Give a simple description of the traces of the following curves:
(a) $x(t)=\cos t+\sin t, y(t)=\cos t-\sin t, 0 \leq t \leq 2 \pi$.
(b) $x(t)=\frac{1}{\cos t}, y(t)=\tan ^{2} t,-\frac{\pi}{2}<t<\frac{\pi}{2}$.
2. Find the lengths of the following curves:

SUPP $t \mapsto\left(e^{t}-t, e^{t}+t\right)$ for $a \leq t \leq b$
Hint: One way to get rid of the square root is by substituting $u=\sqrt{e^{2 t}+1}$.
(b) The spiral $r=\theta^{2}$ for $1 \leq \theta \leq 2$.
(c) The spiral $r=\theta^{-2}$ for $\frac{1}{10} \leq \theta \leq 10$.
3. A curve passes through the point $(1,0)$ and has the slope $\frac{x}{e^{y}}$ at the point (x, y). What is the curve?
Hint: The statement about the slope is a differential equation.
4. Let $L>0$ be a parameter. A curve $y=y(x)$ in the quadrant $x, y \geq 0$ begins at the point $\left(x_{0}, 0\right)$ where $x_{0}>L$, and has the property that for each point (x, y) on the curve, the segment of the tangent line at (x, y) that stretches between that point and the y-axis has length $\frac{x^{2}}{L}$.
(a) Express the condition as an equation involving $\frac{d y}{d x}, x$ and L.
(b) Find $y(x)$.

SUPP What happens if $x_{0}=L$?

Limits

5. Bernoulli's inequality and an application.
(a) Show that for every real $x \geq-1$ and every natural number n the inequality $(1+x)^{n} \geq 1+n x$ holds.
(b) Fix $a>1$ and suppose that $a^{1 / n}>1+\varepsilon$ for some $\varepsilon>0$. Show that $n<\frac{a-1}{\varepsilon}$.
(c) Conclude that $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$.
(d) Let $0<b \leq 1$. Show that $\lim _{n \rightarrow \infty} b^{1 / n}=1$.
6. In each case either show that the limit exists and evaluate it or show that it does not exist.
(a) $\lim _{n \rightarrow \infty} \frac{n^{2}-5 n+\cos n}{1+\sqrt{n}+3 n^{2}}$
(b) $\lim _{n \rightarrow \infty} \frac{(2 n)!}{(n!)^{2}}$

Hint: Compare a_{n+1} to a_{n}.
(c) $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+7 n}-n\right)$.

Supplementary problem: Reparametrization of curves

A. Let $\gamma(t)=(x(t), y(t))$ be a differentiable curve defined on the interval $[a, b]$ (this means that $x(t), y(t)$ are differentiable functions of $t)$. Let $f:[c, d] \rightarrow \mathbb{R}$ be a differentiable function such that $f(c)=a, f(d)=b$ and $f^{\prime}(x)>0$ for all $c<x<d$. Let $\tilde{\gamma}(s)$ be the curve $\tilde{\gamma}(s)=\gamma(f(s))=$ $(x(f(s)), y(f(s)))$.
(a) Show that the range of f is exactly $[a, b]$ and that every point of a, b is of the form $f(x)$ for a unique $x \in[c, d]$.
(b) Show that γ and $\tilde{\gamma}$ have the same length.

Supplementary problem: Newton's Method

B. Let f be twice differentiable on $[a, b]$. Suppose that for some $x_{0} \in(a, b)$ we have $f\left(x_{0}\right)=0$ and $f^{\prime}\left(x_{0}\right) \neq 0$, and define an auxilliary function $G(x)=x-\frac{f(x)}{f^{\prime}(x)}$, at least if $f^{\prime}(x) \neq 0$.
(a) Let I be an interval where f^{\prime} does not vanish. Show that for all x, y in that interval there is ξ between them so that $G(x)-G(y)=\frac{f(\xi) f^{\prime \prime}(\xi)}{\left(f^{\prime}(\xi)\right)^{2}}(x-y)$.
(b) Show that there is $\delta>0$ so that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset[a, b]$ and so that if $\left|\xi-x_{0}\right|<\delta$ then $f^{\prime}(\xi) \neq 0$ and $\left|\frac{f(\xi))^{\prime \prime}(\xi)}{\left(f^{\prime}(\xi)\right)^{2}}\right| \leq \frac{1}{2}$.
(c) Use (a),(b) to show that if $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ then $G(x)$ belongs to the same interval.
(d) Choose $a_{0} \in\left(x_{0}-\delta, x_{0}+\delta\right)$ and define a sequence by $a_{n+1}=G\left(a_{n}\right)$. Show that this is well-defined and that $\left|a_{n+1}-x_{0}\right| \leq \frac{1}{2}\left|a_{n}-x_{0}\right|$.
(e) Conclude that $\left|a_{n}-x_{0}\right| \leq \frac{1}{2^{n}}\left|a_{0}-x_{0}\right|$ and hence that $\lim _{n \rightarrow \infty} a_{n}=x_{0}$.

RMK You have shown that Newton's method will actually find a non-degenerate root if started close enough to it.

Supplementary problems: Topology of the real line

C. Call a subset $U \subset \mathbb{R}$ open if for every $x \in U$ there is $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subset U$.
(a) Show that (a, b) is open if $a<b$.
(b) Show that $\left\{x \mid 2<e^{x^{2}}<3\right\}$ is open.
(c) Let f be a real-valued function defined on a subset of \mathbb{R}. Show that f is continuous if and only if for every open subset $U \subset \mathbb{R}$ the preimage $f^{-1}(U) \stackrel{\text { def }}{=}\{x \mid f(x) \in U\}$ is open.
Hint: Suppose f is continuous and that $f(x) \in U$. Use the definition of continuity to show that there is an interval about x which is mapped by f into U. Now show the converse.
(d) Show that the class of open sets includes the empty set, all of \mathbb{R}.
(e) Show that if U, V are open then so are $U \cap V$ and $U \cup V$.
(f) Show that if \mathcal{U} is a collection of open subset of \mathbb{R} then its union $\cup \mathcal{U}$ is also open.
D. Call a subset $A \subset \mathbb{R}$ closed if its complement $\mathbb{R} \backslash A=\{x \in \mathbb{R} \mid x \notin A\}$ is open.
(a) Suppose A is closed and let $\left\{a_{n}\right\}_{n \geq n_{0}} \subset A$ converge to $L \in \mathbb{R} . L \in A$.

Hint: Suppose $\lim _{n \rightarrow \infty} a_{n}$ belonged to the open set $\mathbb{R} \backslash C \ldots$
(b) Suppose A has the property that it contains the limit of every convergent sequence whose elements are in A. Show that A is closed.
Hint: Let $x \in \mathbb{R}$. Show that if for every n there is $a_{n} \in A \cap\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$ then $x \in A$ and conclude that if $x \notin A$ then a full interval about x is outside A.
(c) Show that f is continuous if and only if $f^{-1}(A)$ is closed for every closed $A \subset \mathbb{R}$.
E. Show a function f defined on a set $A \subset \mathbb{R}$ is continuous if and only if for every sequence $\left\{x_{n}\right\}_{n \geq n_{0}} \subset A$ which converges to a limit $L \in A$ one has $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(L)$.

