Math 121: Problem set 8 (due 13/3/12)

Practice problems (not for submission!)

Chapter 8: Problems on plotting and lengths. Problems on polar curves. Sections 9.1: All problems.

Parametric curves

- 1. Give a simple description of the traces of the following curves: (a) $x(t) = \cos t + \sin t$, $y(t) = \cos t - \sin t$, $0 \le t \le 2\pi$.
 - (b) $x(t) = \frac{1}{\cos t}, y(t) = \tan^2 t, -\frac{\pi}{2} < t < \frac{\pi}{2}.$
- 2. Find the lengths of the following curves:

SUPP $t \mapsto (e^t - t, e^t + t)$ for $a \le t \le b$

Hint: One way to get rid of the square root is by substituting $u = \sqrt{e^{2t} + 1}$.

- (b) The spiral $r = \theta^2$ for $1 \le \theta \le 2$. (c) The spiral $r = \theta^{-2}$ for $\frac{1}{10} \le \theta \le 10$.
- 3. A curve passes through the point (1,0) and has the slope $\frac{x}{e^y}$ at the point (x,y). What is the curve?

Hint: The statement about the slope is a differential equation.

- 4. Let L > 0 be a parameter. A curve y = y(x) in the quadrant x, y > 0 begins at the point $(x_0, 0)$ where $x_0 > L$, and has the property that for each point (x, y) on the curve, the segment of the tangent line at (x, y) that stretches between that point and the y-axis has length $\frac{x^2}{L}$.
 - (a) Express the condition as an equation involving $\frac{dy}{dx}$, x and L.
 - (b) Find y(x).

SUPP What happens if $x_0 = L$?

Limits

- 5. *Bernoulli's inequality* and an application.
 - (a) Show that for every real $x \ge -1$ and every natural number *n* the inequality $(1+x)^n \ge 1+nx$ holds.
 - (b) Fix a > 1 and suppose that $a^{1/n} > 1 + \varepsilon$ for some $\varepsilon > 0$. Show that $n < \frac{a-1}{\varepsilon}$.
 - (c) Conclude that $\lim_{n\to\infty} \sqrt[n]{a} = 1$.
 - (d) Let $0 < b \le 1$. Show that $\lim_{n \to \infty} b^{1/n} = 1$.
- 6. In each case either show that the limit exists and evaluate it or show that it does not exist.

(a)
$$\lim_{n \to \infty} \frac{n^{-} - 5n + \cos n}{1 + \sqrt{n} + 3n^{2}}$$

(b)
$$\lim_{n \to \infty} \frac{(2n)!}{(n!)^{2}}$$

Hint: Compare a_{n+1} to a_{n} .
(c)
$$\lim_{n \to \infty} \left(\sqrt{n^{2} + 7n} - n\right).$$

Supplementary problem: Reparametrization of curves

- A. Let $\gamma(t) = (x(t), y(t))$ be a differentiable curve defined on the interval [a, b] (this means that x(t), y(t) are differentiable functions of t). Let $f: [c,d] \to \mathbb{R}$ be a differentiable function such that f(c) = a, f(d) = b and f'(x) > 0 for all c < x < d. Let $\tilde{\gamma}(s)$ be the curve $\tilde{\gamma}(s) = \gamma(f(s)) = c$ (x(f(s)), y(f(s))).
 - (a) Show that the range of f is exactly [a,b] and that every point of a, b is of the form f(x) for a unique $x \in [c,d]$.
 - (b) Show that γ and $\tilde{\gamma}$ have the same length.

Supplementary problem: Newton's Method

- B. Let f be twice differentiable on [a,b]. Suppose that for some $x_0 \in (a,b)$ we have $f(x_0) = 0$ and $f'(x_0) \neq 0$, and define an auxilliary function $G(x) = x - \frac{f(x)}{f'(x)}$, at least if $f'(x) \neq 0$.
 - (a) Let *I* be an interval where f' does not vanish. Show that for all x, y in that interval there is ξ between them so that G(x) G(y) = (f(ξ))/(f'(ξ))^2 (x y).
 (b) Show that there is δ > 0 so that (x₀ δ, x₀ + δ) ⊂ [a,b] and so that if |ξ x₀| < δ then
 - $f'(\xi) \neq 0$ and $\left| \frac{f(\xi)f''(\xi)}{(f'(\xi))^2} \right| \leq \frac{1}{2}$.
 - (c) Use (a),(b) to show that if $x \in (x_0 \delta, x_0 + \delta)$ then G(x) belongs to the same interval.
 - (d) Choose $a_0 \in (x_0 \delta, x_0 + \delta)$ and define a sequence by $a_{n+1} = G(a_n)$. Show that this is well-defined and that $|a_{n+1} - x_0| \le \frac{1}{2} |a_n - x_0|$.
 - (e) Conclude that $|a_n x_0| \le \frac{1}{2^n} |a_0 x_0|$ and hence that $\lim_{n \to \infty} a_n = x_0$.
 - RMK You have shown that Newton's method will actually find a non-degenerate root if started close enough to it.

Supplementary problems: Topology of the real line

- C. Call a subset $U \subset \mathbb{R}$ open if for every $x \in U$ there is $\varepsilon > 0$ such that $(x \varepsilon, x + \varepsilon) \subset U$.
 - (a) Show that (a,b) is open if a < b.

 - (b) Show that $\{x \mid 2 < e^{x^2} < 3\}$ is open. (c) Let *f* be a real-valued function defined on a subset of \mathbb{R} . Show that *f* is continuous if and only if for every open subset $U \subset \mathbb{R}$ the preimage $f^{-1}(U) \stackrel{\text{def}}{=} \{x \mid f(x) \in U\}$ is open. *Hint*: Suppose f is continuous and that $f(x) \in U$. Use the definition of continuity to show that there is an interval about x which is mapped by f into U. Now show the converse.
 - (d) Show that the class of open sets includes the empty set, all of \mathbb{R} .
 - (e) Show that if U, V are open then so are $U \cap V$ and $U \cup V$.
 - (f) Show that if \mathcal{U} is a collection of open subset of \mathbb{R} then its union $\bigcup \mathcal{U}$ is also open.
- D. Call a subset $A \subset \mathbb{R}$ closed if its complement $\mathbb{R} \setminus A = \{x \in \mathbb{R} \mid x \notin A\}$ is open.
 - (a) Suppose A is closed and let $\{a_n\}_{n \ge n_0} \subset A$ converge to $L \in \mathbb{R}$. $L \in A$. *Hint*: Suppose $\lim_{n\to\infty} a_n$ belonged to the open set $\mathbb{R} \setminus C$...
 - (b) Suppose A has the property that it contains the limit of every convergent sequence whose elements are in A. Show that A is closed. *Hint*: Let $x \in \mathbb{R}$. Show that if for every *n* there is $a_n \in A \cap \left(x - \frac{1}{n}, x + \frac{1}{n}\right)$ then $x \in A$ and conclude that if $x \notin A$ then a full interval about x is outside A.
 - (c) Show that f is continuous if and only if $f^{-1}(A)$ is closed for every closed $A \subset \mathbb{R}$.
- E. Show a function f defined on a set $A \subset \mathbb{R}$ is continuous if and only if for every sequence $\{x_n\}_{n>n_0} \subset A$ which converges to a limit $L \in A$ one has $\lim_{n\to\infty} f(x_n) = f(L)$.