Math 121: Problem set 7 (due 6/3/12)

Practice problems (not for submission!)

Section 7.7 - Probability
Section 7.8 - Separable equations only

Differential Equations

1. Find a function $y(x)$ so that $y^{\prime}=\cos y$ and $y(0)=0$.
2. There is a function f, defined for $x>0$, for which $f(x)-\int_{0}^{x} \frac{f(t)}{t^{2}} \mathrm{~d} t$ is constant and such that $f(1)=\frac{1}{e}$.
(a) Supposing f exists, find it.
(*b) Show that the f you found actually solves the equation, in that the improper integral converges.

Probability

3. Let X be distributed among $\{0,1, \ldots, n-1\}$ where $\operatorname{Pr}(X=i)$ is propotional to q^{i} (here $0<$ $q<1$ is a constant.).
(a) Find the constant C so that $\operatorname{Pr}(X=i)=C q^{i}$.

Hint: The total probability must be 1 ; now use Problem set 1, problem 2(b).
(b) Find the expectation of X.

Hint: PS1, Problem 2(c).
(c) Show that as $n \rightarrow \infty$ the answer of (b) tends to a finite limit. In other words, for n very large X occasionally takes large values, but these occur rarely enough to keep the expectations bounded.
SUPP Find the variance.
4. For each of the following functions f find a normalizing constant so that $p(x)=c f(x)$ is a probability density function. Now let $m_{n}(f)=\int_{a}^{b} x^{n} p(x) \mathrm{d} x$ denote the " nth moment" of p. Next, calculate (2) $\mu=m_{1}(f)$ (3) $\sigma=\sqrt{m_{2}(f)-\left(m_{1}(f)\right)^{2}}$ (4) the "moment generating function" $M(t)=\mathbb{E} e^{t X}=\int_{a}^{b} e^{t x} p(x) \mathrm{d} x$ (in particular, find for which values of t this converges).
(a) ("Gamma distribution") $f(x)=x^{s-1} e^{-x}$ on the interval $0<x<\infty$ and zero otherwise ($s>0$ is a fixed parameter).
Hint: μ, σ^{2} are polynomials in s.
(b) For $s>1$ find the location of the peak of the Gamma distribution. Compare the location of the peak with μ.
(c) $f(x)=\cos x$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(d) ("Normal distribution") $f(x)=c e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ on the whole line.
5. (Probabilities)
(a) Let x be distributed uniformly in the interval $[a, b]$. Find the probability that f is more than two standard deviations greater than the mean.
(b) The heights of Canadian men are approximately normally distributed (see 4(d)) with mean about 175 cm and standard deviation about 7 cm . Using the method of problem 6(e) below with $n=10$ estimate the proportion of Canadian men with height between 170 cm and 180 cm .

Exploration: Numerical Integration

In these problems we will examine some methods for computing integrals numerically. Accordingly, let f be a continuous function defined on the interval $[a, b]$. We will suppose that derivative of f exist as needed and write $M_{k}=\max \left\{\left|f^{(k)}(x)\right| \mid x \in[a, b]\right\}$. Let $I=\int_{a}^{b} f(x) \mathrm{d} x$.
6. The midpoint rule.
(a) Suppose first that $a=-h / 2, b=h / 2$ for some parameter h (the length of the interval) and consider the auxilliary function

$$
F_{\mathrm{m}}(y)=\int_{-y}^{y} f(x) \mathrm{d} x-2 y f(0)
$$

Show that $F_{\mathrm{m}}(0)=F_{\mathrm{m}}^{\prime}(0)=0$.
(*b) Show that $\left|F_{\mathrm{m}}^{\prime \prime}(y)\right| \leq h M_{2}$ for all $0 \leq y \leq \frac{h}{2}$ and use Taylor's Theorem to conclude that $\left|F_{\mathrm{m}}\left(\frac{h}{2}\right)\right| \leq \frac{M_{2} h^{3}}{8}$.
SUPP Using the integral form of the remainder in Taylor's Theorem show that $\left|F_{\mathrm{m}}\left(\frac{h}{2}\right)\right| \leq$ $\frac{M_{2} h^{3}}{24}$.
(d) Suppose that if f is defined on $[a, b]$ and $a \leq x_{i-1} \leq x_{i} \leq b$. Show that $\left|\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x-h f\left(\frac{x_{i}+x_{i-1}}{2}\right)\right| \leq$ $\frac{M_{2} h^{3}}{24}$ where $h=x_{i}-x_{i-1}$.
(e) Let $x_{i}=a+\frac{b-a}{n} i$ for $0 \leq i \leq n$ (the uniform partition). Writing $h=\frac{b-a}{n}$, show that

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-h \sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right)\right| \leq \frac{M_{2}(b-a)^{3}}{24 n^{2}}
$$

RMK The formula is called the "midpoint rule" for evaluation of integrals, since f is evaluated at the middle of every subinterval.
(f) Approximate $\log 2=\int_{1}^{2} \frac{\mathrm{~d} x}{x}$ to 2 decimal digits using the midpoint rule.
(g) Approximate $4 \int_{0}^{1} \frac{\mathrm{~d} x}{1+x^{2}}$ to 2 decimal digits using the midpoint rule. What is the exact answer?

SUPP (The trapezoid rule)
(a) On the interval $\left[-\frac{h}{2}, \frac{h}{2}\right]$ use the auxilliary function $F_{\mathrm{t}}(y)=\int_{-y}^{+y} f(x) \mathrm{d} x-y(f(y)+f(-y))$ to show that

$$
\left|\int_{-h / 2}^{+h / 2} f(x) \mathrm{d} x-h \frac{f\left(\frac{h}{2}\right)+f\left(-\frac{h}{2}\right)}{2}\right| \leq \frac{M_{2} h^{3}}{12}
$$

(b) Conclude that with the notation of 6(d),

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-h\left(\frac{f(a)}{2}+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{f(b)}{2}\right)\right| \leq \frac{M_{2}(b-a)^{3}}{12 n^{2}}
$$

Hint: keep track of the contribution of each endpoint as you sum over the subintervals $\left.{ }^{x_{i-1}}, x_{i}\right]$.

RMK This is called the "trapezoid rule" since $(b-a) \frac{f(a)+f(b)}{2}$ is the area of the trapezium with vertices $(a, 0),(a, f(a)),(b, f(b)),(b, 0)$. It is less accurate than the midpoint rule for the same number of function evaluations, but it is simpler and sometimes more convenient.

Supplementary problems

A Let $B_{n}(R)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2} \leq R^{2}\right\}$ be the ball of radius R in n-dimensional space. We will calculate its volume.
(a) Show that the 1-dimensional volume of $B_{1}(R)$ is $2 R$.
(b) Suppose that the n-dimensional volume of $B_{n}(R)$ is $c_{n} R^{n}$. Show that the ($n+1$)-dimensional volume of B_{n+1} is $c_{n+1} R^{n+1}$ where

$$
c_{n+1}=2 c_{n} \int_{0}^{\pi / 2} \cos ^{n+1} \theta \mathrm{~d} \theta
$$

(c) Show that $c_{n}=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)}$.
(d) Find the $(n-1)$-dimensional volume of a sphere of radius R in n-dimesional space. Hint: Slice the ball into concentric spheres.

