Math 121: Problem set 5 (due 10/2/12)

Practice problems (not for submission!)

Section 6.5

Improper integrals

- 1. In both part (a) and part (b) use the change-of-variable x = -y to show that:
 - (a) Suppose that f(x) = f(-x) for all x (f is "even"). Show that $\int_{x=-a}^{x=0} f(x) dx = \int_{x=0}^{x=a} f(x) dx$ and therefore that $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
 - (b) Suppose that f(x) = -f(-x) for all x (f is "odd"). Show that $\int_{-a}^{a} f(x) dx = 0$.

SUPP (Why we treat each boundary point separately) Consider the integral $\int_{-1}^{1} \frac{1}{x} dx$.

- RMK $\frac{1}{x}$ is odd, and the point is to understand why the integral is undefined rather than zero.
- (a) Show that $\int_{-1}^{-\varepsilon} \frac{1}{x} dx + \int_{\varepsilon}^{1} \frac{dx}{x} = 0$ (we removed a symmetric neigbourhood of the bad point x = 0).
- (b) Show that $\lim_{\varepsilon \to 0^+} \int_{-1}^{-\varepsilon} \frac{dx}{x} + \int_{\varepsilon^2}^{1} \frac{dx}{x} = \infty$ (we removed the neighbourhood $(-\varepsilon, \varepsilon^2)$ which is "lop-sided")
- (c) Show that $\lim_{\varepsilon \to 0^+} \int_{-1}^{-\varepsilon^2} \frac{dx}{x} + \int_{\varepsilon}^{1} \frac{dx}{x} = -\infty$ (we removed the neighbourhood $(-\varepsilon^2, \varepsilon)$).
- 2. Show that the following integrals converge absolutely.

(a)
$$\int_{5}^{\infty} e^{-x} dx.$$

(b) $\int_{10}^{\infty} \frac{\cos(e^x)e^{-x^2}}{1+x^2-\sin x} dx.$

- 3. In this problem we evaluate the integral $I = \int_0^\infty \frac{\sin x}{x} dx$ by a method commonly used in physics called "regularization" or "adding a convergence factor".
 - (a) Show that $\left|\frac{\sin x}{x}\right| \le 1$ for all *x*. *Hint*: Apply the mean value theorem to $\frac{\sin x - \sin 0}{r - 0}$.
 - (b) Conclude that $\int_0^1 \frac{\sin x}{x} dx$ converges. Hint: Absolute convergence.
 - (c) Using integration by parts, show that $\int_1^T \frac{\sin x}{x} dx = -\left[\frac{\cos x}{x}\right]_{x=1}^{x=T} \int_1^T \frac{\cos x}{x^2} dx$. Taking the limit as $T \to \infty$ show that $\int_1^\infty \frac{\sin x}{x} dx$ converges. RMK Integration by parts "allows us" to see the cancellation.

SUPP Show that $\int_0^\infty \left| \frac{\sin x}{x} \right| dx$ diverges.

Hint: Consider intervals of the form $\left[2\pi k + \frac{\pi}{4}, 2\pi k + \frac{3\pi}{4}\right]$.

- (d) For t > 0 set $I(t) = \int_0^\infty \frac{\sin x}{x} e^{-tx} dx$. Show that I(t) converges absolutely and that $|I(t)| \le \frac{1}{t}$. *Hint*: $\left|\frac{\sin x}{x} e^{-tx}\right| \le e^{-tx}$. (e) Show that lies I(t) = 0
- (e) Show that $\lim_{t\to\infty} I(t) = 0$.
- (f) Show that $0 \le 1 e^{-t} \le t$ for all $t \ge 0$. Hint: The mean value theorem.

(g) Show that $\lim_{t\to 0} \int_0^T \frac{\sin x}{x} e^{-tx} dx = \int_0^T \frac{\sin x}{x} dx$. *Hint:* Subtract the integrals of both sides and combine the idea of (d) and the result of (f). SUPP In fact, $\lim_{t\to 0} I(t) = I$.

SUPP ("Differentiation under the integral sign") Show that for t > 0 I(t) is differentiable as a function of *t* and that

$$I'(t) = \int_0^\infty \frac{\sin x}{x} \left(-xe^{-tx} \right) \mathrm{d}x$$

(note that the term in the parentheses is the derivative of e^{-tx} with respect to *t*). *Hint*: This is a harder version of (g): You need to give an upper bound on $\left|\frac{e^{-(t+h)x}-e^{-tx}}{h} - (-xe^{-tx})\right|$ which is good enough to take the limit as $h \to 0$.

- (h) Evaluate $J(t) = \int_0^\infty e^{-tx} \sin x \, dx$ using a double integration by parts.
- (i) The supplementary part showed that I'(t) = -J(t). Find a formula for I(t) by integrating your answer from part (h); use part (e) for the constant of integration.
- (j) Take the limit $t \to 0$ in your formula to find the value of *I*.

Supplementary problems

- A. (Monotone convergence principle)
 - (a) Suppose that f(x) is monotone nondecreasing and bounded above on [a,b). Show that lim_{x→b} f(x) exists.

Hint: The limit is $\sup \{f(x) \mid a \le x < b\}$.

- (b) Suppose that f(x) is monotone nondecreasing on [a,b) but not bounded above. Show that $\lim_{x\to b} f(x) = \infty$ in the extended sense.
- (c) Repeat parts (a),(b) for f monotone on the interval $[a, \infty)$, studying $\lim_{x\to\infty} f(x)$.

B. (Convergence is not just about asymptotic rate of decay) For $x \ge 1$ let $f(x) = \begin{cases} x & x \le \lfloor x \rfloor + \frac{1}{\lfloor x \rfloor^3} \\ 0 & \text{otherwise} \end{cases}$

and $g(x) = \begin{cases} x & x \le \lfloor x \rfloor + \frac{1}{\lfloor x \rfloor} \\ 0 & \text{otherwise} \end{cases}$ where $\lfloor x \rfloor$ is the largest integer which is not greater than x (e.g.

$$\lfloor 5 \rfloor = \lfloor 5.5 \rfloor = 5).$$

- (a) Show that $f(x) \le g(x)$ for all $x \ge 1$.
- (b) Show that f(x) does not decay at all as $x \to \infty$.
- (c) Show that $\int_{1}^{\infty} f(x) dx$ converges and that $\int_{1}^{\infty} g(x) dx$ diverges.
- RMK This is a rather pathological example; functions arising in "real life" don't normally behave like this.