Math 121: Problem set 5 (due 10/2/12)

Practice problems (not for submission!)
Section 6.5

Improper integrals

1. In both part (a) and part (b) use the change-of-variable $x=-y$ to show that:
(a) Suppose that $f(x)=f(-x)$ for all $x\left(f\right.$ is "even"). Show that $\int_{x=-a}^{x=0} f(x) \mathrm{d} x=\int_{x=0}^{x=a} f(x) \mathrm{d} x$ and therefore that $\int_{-a}^{a} f(x) \mathrm{d} x=2 \int_{0}^{a} f(x) \mathrm{d} x$.
(b) Suppose that $f(x)=-f(-x)$ for all x (f is "odd"). Show that $\int_{-a}^{a} f(x) \mathrm{d} x=0$.

SUPP (Why we treat each boundary point separately) Consider the integral $\int_{-1}^{1} \frac{1}{x} \mathrm{~d} x$.
RMK $\frac{1}{x}$ is odd, and the point is to understand why the integral is undefined rather than zero.
(a) Show that $\int_{-1}^{-\varepsilon} \frac{1}{x} \mathrm{~d} x+\int_{\varepsilon}^{1} \frac{\mathrm{~d} x}{x}=0$ (we removed a symmetric neigbourhood of the bad point $x=0$).
(b) Show that $\lim _{\varepsilon \rightarrow 0^{+}} \int_{-1}^{-\varepsilon} \frac{\mathrm{d} x}{x}+\int_{\varepsilon^{2}}^{1} \frac{\mathrm{~d} x}{x}=\infty$ (we removed the neighbourhood $\left(-\varepsilon, \varepsilon^{2}\right)$ which is "lop-sided")
(c) Show that $\lim _{\varepsilon \rightarrow 0^{+}} \int_{-1}^{-\varepsilon^{2}} \frac{\mathrm{~d} x}{x}+\int_{\varepsilon}^{1} \frac{\mathrm{~d} x}{x}=-\infty$ (we removed the neighbourhood $\left(-\varepsilon^{2}, \varepsilon\right)$).
2. Show that the following integrals converge absolutely.
(a) $\int_{5}^{\infty} e^{-x} \mathrm{~d} x$.
(b) $\int_{10}^{\infty} \frac{\cos \left(e^{x}\right) e^{-x^{2}}}{1+x^{2}-\sin x} \mathrm{~d} x$.
3. In this problem we evaluate the integral $I=\int_{0}^{\infty} \frac{\sin x}{x} d x$ by a method commonly used in physics called "regularization" or "adding a convergence factor".
(a) Show that $\left|\frac{\sin x}{x}\right| \leq 1$ for all x.

Hint: Apply the mean value theorem to $\frac{\sin x-\sin 0}{x-0}$.
(b) Conclude that $\int_{0}^{1} \frac{\sin x}{x} \mathrm{~d} x$ converges.

Hint: Absolute convergence.
(c) Using integration by parts, show that $\int_{1}^{T} \frac{\sin x}{x} \mathrm{~d} x=-\left[\frac{\cos x}{x}\right]_{x=1}^{x=T}-\int_{1}^{T} \frac{\cos x}{x^{2}} \mathrm{~d} x$. Taking the limit as $T \rightarrow \infty$ show that $\int_{1}^{\infty} \frac{\sin x}{x} \mathrm{~d} x$ converges.
RMK Integration by parts "allows us" to see the cancellation.
SUPP Show that $\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| \mathrm{d} x$ diverges.
Hint: Consider intervals of the form $\left[2 \pi k+\frac{\pi}{4}, 2 \pi k+\frac{3 \pi}{4}\right]$.
RMK This gives us an example of an integral that converges, but not absolutely.
(d) For $t>0$ set $I(t)=\int_{0}^{\infty} \frac{\sin x}{x} e^{-t x} d x$. Show that $I(t)$ converges absolutely and that $|I(t)| \leq \frac{1}{t}$. Hint: $\left|\frac{\sin x}{x} e^{-t x}\right| \leq e^{-t x}$.
(e) Show that $\lim _{t \rightarrow \infty} I(t)=0$.
(f) Show that $0 \leq 1-e^{-t} \leq t$ for all $t \geq 0$.

Hint: The mean value theorem.
(g) Show that $\lim _{t \rightarrow 0} \int_{0}^{T} \frac{\sin x}{x} e^{-t x} \mathrm{~d} x=\int_{0}^{T} \frac{\sin x}{x} \mathrm{~d} x$.

Hint: Subtract the integrals of both sides and combine the idea of (d) and the result of (f).
SUPP In fact, $\lim _{t \rightarrow 0} I(t)=I$.

SUPP ("Differentiation under the integral sign") Show that for $t>0 I(t)$ is differentiable as a function of t and that

$$
I^{\prime}(t)=\int_{0}^{\infty} \frac{\sin x}{x}\left(-x e^{-t x}\right) \mathrm{d} x
$$

(note that the term in the parentheses is the derivative of $e^{-t x}$ with respect to t).
Hint: This is a harder version of (g) : You need to give an upper bound on $\left|\frac{e^{-(t+h) x}-e^{-t x}}{h}-\left(-x e^{-t x}\right)\right|$ which is good enough to take the limit as $h \rightarrow 0$.
(h) Evaluate $J(t)=\int_{0}^{\infty} e^{-t x} \sin x \mathrm{~d} x$ using a double integration by parts.
(i) The supplementary part showed that $I^{\prime}(t)=-J(t)$. Find a formula for $I(t)$ by integrating your answer from part (h); use part (e) for the constant of integration.
(j) Take the limit $t \rightarrow 0$ in your formula to find the value of I.

Supplementary problems

A. (Monotone convergence principle)
(a) Suppose that $f(x)$ is monotone nondecreasing and bounded above on $[a, b)$. Show that $\lim _{x \rightarrow b} f(x)$ exists.
Hint: The limit is $\sup \{f(x) \mid a \leq x<b\}$.
(b) Suppose that $f(x)$ is monotone nondecreasing on $[a, b)$ but not bounded above. Show that $\lim _{x \rightarrow b} f(x)=\infty$ in the extended sense.
(c) Repeat parts (a),(b) for f monotone on the interval $[a, \infty)$, studying $\lim _{x \rightarrow \infty} f(x)$.
B. (Convergence is not just about asymptotic rate of decay) For $x \geq 1$ let $f(x)= \begin{cases}x & x \leq\lfloor x\rfloor+\frac{1}{\lfloor x\rfloor^{3}} \\ 0 & \text { otherwise }\end{cases}$ and $g(x)=\left\{\begin{array}{ll}x & x \leq\lfloor x\rfloor+\frac{1}{\lfloor x\rfloor} \\ 0 & \text { otherwise }\end{array}\right.$ where $\lfloor x\rfloor$ is the largest integer which is not greater than x (e.g. $\lfloor 5\rfloor=\lfloor 5.5\rfloor=5)$.
(a) Show that $f(x) \leq g(x)$ for all $x \geq 1$.
(b) Show that $f(x)$ does not decay at all as $x \rightarrow \infty$.
(c) Show that $\int_{1}^{\infty} f(x) \mathrm{d} x$ converges and that $\int_{1}^{\infty} g(x) \mathrm{d} x$ diverges.

RMK This is a rather pathological example; functions arising in "real life" don't normally behave like this.

