Math 121: Problem set 4 (due 3/2/12)

Practice problems (not for submission!)
Section 6.5.

Integration

1. Evaluate
(a) $\int \frac{e^{x}+1}{e^{3 x}+5 e^{2 x}+4 e^{x}+20} \mathrm{~d} x$.
(b) $\int \frac{\mathrm{d} x}{x^{3} \sqrt{1+x^{2}}}$.
2. Let f be a real valued function defined on \mathbb{R}. Suppose that f is identically zero outside the interval $[a, b]$, and that is infinitely differentiable (also called smooth), that is that $f^{(k)}$ exists for all k. We will study the integrals $A(f ; \lambda)=\int_{-\infty}^{+\infty} f(x) \cos (\lambda x) \mathrm{d} x=\int_{a}^{b} f(x) \cos (\lambda x) \mathrm{d} x$ and $B(f ; \lambda)=\int_{-\infty}^{+\infty} f(x) \sin (\lambda x) \mathrm{d} x=\int_{a}^{b} f(x) \sin (\lambda x) \mathrm{d} x$ for large λ. Below we always assume $\lambda \neq 0$.
SUPP Show by induction that for all $k \geq 0 f^{(k)}$ is continuous and vanishes outside $[a, b]$ (and therefore also at a, b). Conclude that there are constants M_{k} so that $\left|f^{(k)}(x)\right| \leq M_{k}$ for all x, k.
(b) Show that $|A(f ; \lambda)|,|B(f ; \lambda)| \leq(b-a) M_{0}$.
(c) Show that $A(f ; \lambda)=-\frac{1}{\lambda} B\left(f^{\prime} ; \lambda\right)$ and that $B(f ; \lambda)=\frac{1}{\lambda} A\left(f^{\prime} ; \lambda\right)$. Conclude that $|A(f ; \lambda)|,|B(f ; \lambda)| \leq$ $\frac{(b-a) M_{1}}{|\lambda|}$.
Hint: Integration by parts.
(d) Show that $|A(f ; \lambda)|,|B(f ; \lambda)| \leq \frac{(b-a) M_{k}}{|\lambda|^{k}}$ holds for all k.

RMK The integrals A, B (considered as functions of λ) are (together) called the Fourier Transform of f [An "integral transform" is an operation that converts a function of x to a function of λ by integrating f against a function of both x and λ, here against $\cos (x \lambda), \sin (x \lambda)]$. You have shown that f being differentiable translates to rapid decay of its Fourier Transform.

Asymptotics and improper integrals

3. Show that $\frac{1}{\sqrt{x}} \sim_{0} \frac{1+x}{\sqrt{x}} \sim_{0} \frac{1}{\sqrt{\sin x}} \sim_{0} \frac{1}{1-e^{-\sqrt{x}}}$.
4. Decide whether the following integrals converge without evaluating them.
(a) $\int_{0}^{1} \frac{d x}{x(1-x)}$.
(b) $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x(1-x)}}$
(c) $\int_{0}^{1} \frac{\mathrm{~d} x}{(x(1-x))^{1 / 3}}$.
(d) $\int_{0}^{\infty} \frac{1-\cos x}{x^{3}} \mathrm{~d} x$.
(*e) $\int_{10}^{\infty} \frac{\mathrm{d} x}{x^{p} \log x}$ (your answer will depend on $p!$)
5. Evaluate the integral $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x(1-x)}}$.

Hint: Shift the function so its axis of symmetry is the y-axis.
6. Euler's Gamma function is the function $\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} \mathrm{~d} x$.
(a) Show that the integral converges for $z>0$.
(b) Use integration by parts to show $\Gamma(z+1)=z \Gamma(z)$ in the region of convergence.
(c) Show that $\Gamma(n+1)=n$! for all $n \in \mathbb{N}$.

Hint: Induction.

Supplementary problems

A. Fun with arctan.
(a) Show that for $a \neq 0, \int \frac{\mathrm{~d} x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)$.

Hint: We basically did this in class.
(*b) Show that for any $x, y \lim _{a \rightarrow 0} \frac{\arctan \left(\frac{x}{a}\right)-\arctan \left(\frac{y}{a}\right)}{a}=\frac{1}{y}-\frac{1}{x}$ (note that the RHS is $\int_{x}^{y} \frac{1}{t^{2}} d t$).
B. Properties of \sim_{a} :
(a) Show that $f \sim_{a} f$ for all f, that if $f \sim_{a} g$ and $g \sim_{a} h$ then $g \sim_{a} f$ and $f \sim_{a} h$.
(b) Show that $f \sim_{a} g$ and $k \sim_{a} l$ implies $f k \sim_{a} g l$ and $\frac{f}{k} \sim_{a} \frac{g}{l}$. Why are you not dividing by zero?

Supplementary problems - Polynomials and Partial fractions

Let F be a field (see Definition 41). Write $F[x]$ for the set of polynomials over F (if $F=\mathbb{R}$ then $F[x]$ includes elements like $\left.0, x, \pi x^{2}+\left(e^{2}-2\right) x-7\right)$. The degree of a polynomial is the degree of its heighest monomial.
C. (The division algorithm) Let $f, g \in F[x]$ be polynomials with $g \neq 0$.
(a) Suppose that $\operatorname{deg} f \geq \operatorname{deg} g$. Show that there is a constant $c \in F$ so that the polynomial $f-\left(c x^{\operatorname{deg} f-\operatorname{deg} g}\right) g$ has degree strictly smaller than that of f.
(b) Show that there are $q, r \in F[x]$ so that $f=q g+r$ and such that $\operatorname{deg} r<\operatorname{deg} g$.

Hint: Induction on $\operatorname{deg} f$ like the proof of partial fractions in class.
(c) Show that the q, r in part (b) are unique: that if $q g+r=q^{\prime} g+r^{\prime}$ where $\operatorname{deg} r^{\prime}<\operatorname{deg} g$ as well then $q=q^{\prime}$ and $r=r^{\prime}$.
Hint: Show that g would divide $r-r^{\prime}$.
D. (Partial fractions in general)
(a) Show that the proof of Proposition 101 (and its preceeding Lemma) holds over any field.
(b) The "Fundamental Theorem of Algebra" states that every polynomial $Q \in \mathbb{C}[x]$ of positive degree has a complex root. Deduce that over \mathbb{C} every ratio $\frac{P}{Q}$ can be expressed as the sum of a polynomial and terms of the form $\frac{C_{i, j}}{\left(x-a_{i}\right)^{j}}$.
E. Application
(a) Find the complex partial fraction expansions of $\frac{1}{1+x^{2}}, \frac{1}{x^{3}-1}$.
(b) Show that $\int \frac{\mathrm{d} x}{1+x^{2}}=\frac{i}{2} \log \frac{x+i}{x-i}+C$.
$(* * \mathrm{c})$ Show that (at least for x real) $\frac{i}{2} \log \frac{x+i}{x-i}+C=\arctan x+C$ for an appropriate branch of the logarithm.

