Math 121: Problem set 4 (due 3/2/12)

Practice problems (not for submission!)

Section 6.5.

Integration

- 1. Evaluate
 - (a) $\int \frac{e^{x}+1}{e^{3x}+5e^{2x}+4e^{x}+20} dx.$ (b) $\int \frac{dx}{x^3\sqrt{1+x^2}}.$
- 2. Let *f* be a real valued function defined on \mathbb{R} . Suppose that *f* is identically zero outside the interval [a,b], and that is *infinitely differentiable* (also called *smooth*), that is that $f^{(k)}$ exists for all *k*. We will study the integrals $A(f;\lambda) = \int_{-\infty}^{+\infty} f(x) \cos(\lambda x) dx = \int_{a}^{b} f(x) \cos(\lambda x) dx$ and $B(f;\lambda) = \int_{-\infty}^{+\infty} f(x) \sin(\lambda x) dx = \int_{a}^{b} f(x) \sin(\lambda x) dx$ for large λ . Below we always assume $\lambda \neq 0$.
 - SUPP Show by induction that for all $k \ge 0$ $f^{(k)}$ is continuous and vanishes outside [a,b] (and therefore also at a,b). Conclude that there are constants M_k so that $|f^{(k)}(x)| \le M_k$ for all x,k.
 - (b) Show that $|A(f;\lambda)|, |B(f;\lambda)| \leq (b-a)M_0$.
 - (c) Show that $A(f;\lambda) = -\frac{1}{\lambda}B(f';\lambda)$ and that $B(f;\lambda) = \frac{1}{\lambda}A(f';\lambda)$. Conclude that $|A(f;\lambda)|, |B(f;\lambda)| \le \frac{(b-a)M_1}{|\lambda|}$.

Hint: Integration by parts.

- (d) Show that $|A(f;\lambda)|, |B(f;\lambda)| \leq \frac{(b-a)M_k}{|\lambda|^k}$ holds for all *k*.
- RMK The integrals A, B (considered as functions of λ) are (together) called the *Fourier Trans*form of f [An "integral transform" is an operation that converts a function of x to a function of λ by integrating f against a function of both x and λ , here against $\cos(x\lambda), \sin(x\lambda)$]. You have shown that f being differentiable translates to *rapid decay* of its Fourier Transform.

Asymptotics and improper integrals

- 3. Show that $\frac{1}{\sqrt{x}} \sim_0 \frac{1+x}{\sqrt{x}} \sim_0 \frac{1}{\sqrt{\sin x}} \sim_0 \frac{1}{1-e^{-\sqrt{x}}}$.
- 4. Decide whether the following integrals converge without evaluating them.

(a)
$$\int_{0}^{1} \frac{dx}{x(1-x)}$$
.
(b) $\int_{0}^{1} \frac{dx}{\sqrt{x(1-x)}}$
(c) $\int_{0}^{1} \frac{dx}{(x(1-x))^{1/3}}$.
(d) $\int_{0}^{\infty} \frac{1-\cos x}{x^{3}} dx$.
(*e) $\int_{10}^{\infty} \frac{dx}{x^{p} \log x}$ (your answer will depend on *p*!)

- 5. Evaluate the integral $\int_0^1 \frac{dx}{\sqrt{x(1-x)}}$. *Hint*: Shift the function so its axis of symmetry is the *y*-axis.
- 6. Euler's Gamma function is the function $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$.
 - (a) Show that the integral converges for z > 0.
 - (b) Use integration by parts to show $\Gamma(z+1) = z\Gamma(z)$ in the region of convergence.
 - (c) Show that $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}$. *Hint*: Induction.

Supplementary problems

- A. Fun with arctan.
 - (a) Show that for $a \neq 0$, $\int \frac{dx}{a^2+x^2} = \frac{1}{a} \arctan(\frac{x}{a})$. *Hint*: We basically did this in class.

(*b) Show that for any $x, y \lim_{a \to 0} \frac{\arctan(\frac{x}{a}) - \arctan(\frac{y}{a})}{a} = \frac{1}{y} - \frac{1}{x}$ (note that the RHS is $\int_x^y \frac{1}{t^2} dt$).

- B. Properties of \sim_a :
 - (a) Show that $f \sim_a f$ for all f, that if $f \sim_a g$ and $g \sim_a h$ then $g \sim_a f$ and $f \sim_a h$.
 - (b) Show that $f \sim_a g$ and $k \sim_a l$ implies $fk \sim_a gl$ and $\frac{f}{k} \sim_a \frac{g}{l}$. Why are you not dividing by zero?

Supplementary problems – Polynomials and Partial fractions

Let *F* be a field (see Definition 41). Write F[x] for the set of polynomials over *F* (if $F = \mathbb{R}$ then F[x] includes elements like 0, x, $\pi x^2 + (e^2 - 2)x - 7$). The *degree* of a polynomial is the degree of its heighest monomial.

- C. (The division algorithm) Let $f, g \in F[x]$ be polynomials with $g \neq 0$.
 - (a) Suppose that deg $f \ge \deg g$. Show that there is a constant $c \in F$ so that the polynomial $f (cx^{\deg f \deg g})g$ has degree strictly smaller than that of f.
 - (b) Show that there are $q, r \in F[x]$ so that f = qg + r and such that deg $r < \deg g$. *Hint*: Induction on deg *f* like the proof of partial fractions in class.
 - (c) Show that the q, r in part (b) are unique: that if qg + r = q'g + r' where deg $r' < \deg g$ as well then q = q' and r = r'. *Hint*: Show that g would divide r - r'.
- D. (Partial fractions in general)
 - (a) Show that the proof of Proposition 101 (and its preceeding Lemma) holds over any field.
 - (b) The "Fundamental Theorem of Algebra" states that every polynomial $Q \in \mathbb{C}[x]$ of positive degree has a complex root. Deduce that over \mathbb{C} every ratio $\frac{P}{Q}$ can be expressed as the sum of a polynomial and terms of the form $\frac{C_{i,j}}{(x-a_i)^j}$.
- E. Application
 - (a) Find the complex partial fraction expansions of $\frac{1}{1+r^2}$, $\frac{1}{r^{3}-1}$.
 - (b) Show that $\int \frac{dx}{1+x^2} = \frac{i}{2} \log \frac{x+i}{x-i} + C$.
 - (**c) Show that (at least for x real) $\frac{i}{2}\log \frac{x+i}{x-i} + C = \arctan x + C$ for an appropriate branch of the logarithm.