Math 121: Problem set 2 (due 20/1/12)

Foundations

- 1. (Density of rationals and irrationals).
 - (a) Let $x, T \in \mathbb{R}$ with T > 0. Let *n* be the largest integer so that $n \leq Tx$. Show that $\frac{n}{T} \leq x \leq \frac{n+1}{T}$, and in particular that $|x \frac{n}{T}| \leq \frac{1}{T}$.
 - (b) Show that any interval of the form [a,b] contains a rational number. *Hint*: In part (a) take x = a and T to be a large integer.
 - (c) Show that any interval of the form [*a*,*b*] contains an irrational number. *Hint*: Choose *T* differently.

Calculus

- 2. Let f be integrable on [a,b]. We show that -f is integrable on this interval and that $\int_a^b (-f)(x)dx = -\int_a^b f(x)dx$.
 - (a) For any paritition P express L(-f;P), U(-f;P) in terms of L(f;P), U(f;P).
 - (b) Let *P* be such that L(f;P), U(f;P) are within ε of $I = \int_a^b f(x) dx$. Show that L(-f;P), U(-f;P) are within ε of -I.
- 3. Let *R* be the bounded region bounded by the graphs of $f(x) = \log(x)$, $g(x) = x^2 2$ (formally, $R = \{(x, y) \mid x > 0; x^2 2 \le y \le \log x\}$).
 - You may want to draw yourself a picture of this region. Note that log denotes the natural logarithm.
 - (a) Show that the two graphs intersect at exactly two points. Call a < b the x-coordinates of those points.
 - (b) Let *a* < *x*_{*i*-1} < *x*_{*i*} < *b*. In this part we consider the intersection of the region *R* with the strip determined by the interval [*x*_{*i*-1},*x*_{*i*}]. Write *M*_{*i*}(*f*) = sup {*f*(*x*) | *x* ∈ [*x*_{*i*-1},*x*_{*i*}]}, and similarly *m*_{*i*}(*g*), *M*_{*i*}(*g*) for the quantities for *g*. Using only the numbers *x*_{*i*-1},*x*_{*i*},*m*_{*i*}(*f*),*M*_{*i*}(*f*),*m*_{*i*}(*g*),*M*_{*i*}(*g*) describe two rectangles in the plane, one contained in the intersection and one containing the intersection.

Hint: The height of one of the rectangles is $M_i(f) - m_i(g)$.

(c) Show that for any partition P of [a,b], the area of R satisfies $L(f;P) - U(g;P) \le \operatorname{Area}(R) \le U(f;P) - L(g;P)$.

Hint: Sum your results from part (b).

- (d) Given that f, g are integrable on [a, b] show that $\operatorname{Area}(R) = \int_a^b f(x) dx \int_a^b g(x) dx$.
- 4. Find a function f so that $\int_x^{10} f(t)dt = 5 f(x)$ for all $x \in \mathbb{R}$. *Hint:* Differentiate with respect to x

Supplementary problem – an integrable function

A. The *Riemann function* is defined by

$$R(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q}, \, p, q \in \mathbb{Z} \text{ relatively prime with } q \ge 1\\ 0 & x \text{ irrational} \end{cases}.$$

- (a) Show that R(x) is continuous at $x_0 \in \mathbb{R}$ iff x_0 is irrational.
- (b) Given ε > 0 construct a partition P of [0,1] for which U(R;P) ≤ ε.
 Hint: Around each rational ^p/_q with 1 ≤ q ≤ T take a small interval of length δ. How big does R get outside those intervals?
- (c) Show that R(x) is integrable on every interval and that its integral is zero.

Supplementary problems – the natural numbers

- A. Call a subset $A \subset \mathbb{R}$ *inductive* if $0 \in \mathbb{R}$ and if $x \in \mathbb{R}$ implies $x + 1 \in \mathbb{R}$.
 - (a) Show that \mathbb{R} itself is inductive. are all inductive.
 - (b) Show that $[0,\infty)$, $\mathbb{Q} \cap [0,\infty)$, and $\{0\} \cup [1,\infty)$ are all inductive.
 - (c) Let A ⊂ ℝ be inductive, and suppose that *M* is an upper bound for *A*. Show that M − 1 is also an upper bound. *Hint:* For x ∈ A show that x + 1 ≤ M.
 - (d) Show that no inductive set is bounded above.
- B. The set of natural numbers is by definition $\mathbb{N} \stackrel{\text{def}}{=} \bigcap \{A \mid A \text{ is inductive}\} = \{x \in \mathbb{R} \mid x \text{ belongs to every inductive}\}$
 - (a) Show that $0 \in \mathbb{N}$, $1 \in \mathbb{N}$, $2 \in \mathbb{N}$.
 - (b) Show that every element of N is non-negative, and that there is no n ∈ N so that 0 < n < 1.. *Hint*: A(a), A(b).
 - (c) Show that \mathbb{N} is inductive. Conclude from 1(c) that \mathbb{R} has the *archimedean property*: for every $M \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that $n \ge M$.
 - (d) Conclude that for every $\varepsilon > 0$ there is $n \in \mathbb{N}$ so that $\frac{1}{n} < \varepsilon$.
 - (e) Show that \mathbb{N} is the smallest inductive set: that if *A* is inductive then $\mathbb{N} \subset A$.

REMARK. B(c) is the principle of induction!

- C. Properties of the natural numbers
 - (a) Show that \mathbb{N} is closed under addition. *Hint*: Show that $\{n \in \mathbb{N} \mid \text{for all } m \in \mathbb{N}, m + n \in \mathbb{N}\}$ is inductive.
 - (b) Show that \mathbb{N} is closed under multiplication. *Hint*: Show that $\{n \in \mathbb{N} \mid \text{for all } m \in \mathbb{N}, mn \in \mathbb{N}\}$ is inductive.
 - (c) Show that $\{n \in \mathbb{N} \mid n = 0 \text{ or } n 1 \in \mathbb{N}\}$ is inductive. Conclude that if $n \in \mathbb{N}_{\geq 1}$ then $n 1 \in \mathbb{N}$.
 - (d) Show that if $n, m \in \mathbb{N}$ and $n \ge m$ then $n m \in \mathbb{N}$.
 - (e) Show that \mathbb{N} is *discrete*: if $n \in \mathbb{N}$ then $(n-1, n+1) \cap \mathbb{N} = \{n\}$. *Hint*: Deduce this from B(b) and C(d).