## Math 121: Problem set 2 (due 20/1/12)

## Foundations

1. (Density of rationals and irrationals).
(a) Let $x, T \in \mathbb{R}$ with $T>0$. Let $n$ be the largest integer so that $n \leq T x$. Show that $\frac{n}{T} \leq x \leq \frac{n+1}{T}$, and in particular that $\left|x-\frac{n}{T}\right| \leq \frac{1}{T}$.
(b) Show that any interval of the form $[a, b]$ contains a rational number.

Hint: In part (a) take $x=a$ and $T$ to be a large integer.
(c) Show that any interval of the form $[a, b]$ contains an irrational number.

Hint: Choose $T$ differently.

## Calculus

2. Let $f$ be integrable on $[a, b]$. We show that $-f$ is integrable on this interval and that $\int_{a}^{b}(-f)(x) d x=$ $-\int_{a}^{b} f(x) d x$.
(a) For any paritition $P$ express $L(-f ; P), U(-f ; P)$ in terms of $L(f ; P), U(f ; P)$.
(b) Let $P$ be such that $L(f ; P), U(f ; P)$ are within $\varepsilon$ of $I=\int_{a}^{b} f(x) d x$. Show that $L(-f ; P), U(-f ; P)$ are within $\varepsilon$ of $-I$.
3. Let $R$ be the bounded region bounded by the graphs of $f(x)=\log (x), g(x)=x^{2}-2$ (formally, $\left.R=\left\{(x, y) \mid x>0 ; x^{2}-2 \leq y \leq \log x\right\}\right)$.

- You may want to draw yourself a picture of this region. Note that $\log$ denotes the natural logarithm.
(a) Show that the two graphs intersect at exactly two points. Call $a<b$ the $x$-coordinates of those points.
(b) Let $a<x_{i-1}<x_{i}<b$. In this part we consider the intersection of the region $R$ with the strip determined by the interval $\left[x_{i-1}, x_{i}\right]$. Write $M_{i}(f)=\sup \left\{f(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}$, and similarly $m_{i}(g), M_{i}(g)$ for the quantities for $g$. Using only the numbers $x_{i-1}, x_{i}, m_{i}(f), M_{i}(f), m_{i}(g), M_{i}(g)$ describe two rectangles in the plane, one contained in the intersection and one containing the intersection.
Hint: The height of one of the rectangles is $M_{i}(f)-m_{i}(g)$.
(c) Show that for any partition $P$ of $[a, b]$, the area of $R$ satisfies $L(f ; P)-U(g ; P) \leq \operatorname{Area}(R) \leq$ $U(f ; P)-L(g ; P)$.
Hint: Sum your results from part (b).
(d) Given that $f, g$ are integrable on $[a, b]$ show that $\operatorname{Area}(R)=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$.

4. Find a function $f$ so that $\int_{x}^{10} f(t) d t=5-f(x)$ for all $x \in \mathbb{R}$.

Hint: Differentiate with respect to $x$

## Supplementary problem - an integrable function

A. The Riemann function is defined by

$$
R(x)=\left\{\begin{array}{ll}
\frac{1}{q} & x=\frac{p}{q}, p, q \in \mathbb{Z} \text { relatively prime with } q \geq 1 \\
0 & x \text { irrational }
\end{array} .\right.
$$

(a) Show that $R(x)$ is continuous at $x_{0} \in \mathbb{R}$ iff $x_{0}$ is irrational.
(b) Given $\varepsilon>0$ construct a partition $P$ of $[0,1]$ for which $U(R ; P) \leq \varepsilon$.

Hint: Around each rational $\frac{p}{q}$ with $1 \leq q \leq T$ take a small interval of length $\delta$. How big does $R$ get outside those intervals?
(c) Show that $R(x)$ is integrable on every interval and that its integral is zero.

## Supplementary problems - the natural numbers

A. Call a subset $A \subset \mathbb{R}$ inductive if $0 \in \mathbb{R}$ and if $x \in \mathbb{R}$ implies $x+1 \in \mathbb{R}$.
(a) Show that $\mathbb{R}$ itself is inductive. are all inductive.
(b) Show that $[0, \infty), \mathbb{Q} \cap[0, \infty)$, and $\{0\} \cup[1, \infty)$ are all inductive.
(c) Let $A \subset \mathbb{R}$ be inductive, and suppose that $M$ is an upper bound for $A$. Show that $M-1$ is also an upper bound.
Hint: For $x \in A$ show that $x+1 \leq M$.
(d) Show that no inductive set is bounded above.
B. The set of natural numbers is by definition $\mathbb{N} \stackrel{\text { def }}{=} \bigcap\{A \mid A$ is inductive $\}=\{x \in \mathbb{R} \mid x$ belongs to every inductive
(a) Show that $0 \in \mathbb{N}, 1 \in \mathbb{N}, 2 \in \mathbb{N}$.
(b) Show that every element of $\mathbb{N}$ is non-negative, and that there is no $n \in \mathbb{N}$ so that $0<n<1$.. Hint: A(a), A(b).
(c) Show that $\mathbb{N}$ is inductive. Conclude from 1(c) that $\mathbb{R}$ has the archimedean property: for every $M \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that $n \geq M$.
(d) Conclude that for every $\varepsilon>0$ there is $n \in \mathbb{N}$ so that $\frac{1}{n}<\varepsilon$.
(e) Show that $\mathbb{N}$ is the smallest inductive set: that if $A$ is inductive then $\mathbb{N} \subset A$.

REMARK. $\mathrm{B}(\mathrm{c})$ is the principle of induction!
C. Properties of the natural numbers
(a) Show that $\mathbb{N}$ is closed under addition.

Hint: Show that $\{n \in \mathbb{N} \mid$ for all $m \in \mathbb{N}, m+n \in \mathbb{N}\}$ is inductive.
(b) Show that $\mathbb{N}$ is closed under multiplication.

Hint: Show that $\{n \in \mathbb{N} \mid$ for all $m \in \mathbb{N}, m n \in \mathbb{N}\}$ is inductive.
(c) Show that $\{n \in \mathbb{N} \mid n=0$ or $n-1 \in \mathbb{N}\}$ is inductive. Conclude that if $n \in \mathbb{N}_{\geq 1}$ then $n-1 \in$ $\mathbb{N}$.
(d) Show that if $n, m \in \mathbb{N}$ and $n \geq m$ then $n-m \in \mathbb{N}$.
(e) Show that $\mathbb{N}$ is discrete: if $n \in \mathbb{N}$ then $(n-1, n+1) \cap \mathbb{N}=\{n\}$.

Hint: Deduce this from B(b) and C(d).

