FOURIER SERIES AND THE POISSON SUMMATION FORMULA (NOTES FOR MATH 613)

LIOR SILBERMAN

Notation

Write S^{1} for the circle group $\left\{z \in \mathbb{C}^{\times}| | z \mid=1\right\}$. We use the number theorists' expoenntial: for $z \in \mathbb{C}$ write $e(z) \stackrel{\text { def }}{=} e^{2 \pi i z}$. All group homomorphisms are assumed to be continuous.

For a topological space X write $C(X)$ for the space of \mathbb{C}-valued continuous functions on $X, C_{\mathrm{c}}(X)$ for its subspace of functions of compact support. If μ is a Radon measure on X and $1 \leq p \leq \infty$ write $L^{p}(\mu)$ for the usual space of [equivalence classes of] p-integrable functions. We sometimes write $L^{p}(X)$ when the measure is clear (and note that if $L^{p}(f \mu)=L^{p}(\mu)$ if f is bounded)

When X is compact, $C(X)$ is complete in the L^{∞} norm and (Stone-Weierstrass) a subalgebra $\mathcal{A} \subset C(X)$ is dense iff it separates points, does not have a common zero, and is closed under conjugation.

On a manifold X write $C^{j}(X)$ for the space of functions differentiable j times with continuous derivatives of order $j, C^{\infty}(X)=\cap_{j} C^{j}(X)$, and $C_{\mathrm{c}}^{\infty}(X)=C^{\infty}(X) \cap C_{\mathrm{c}}(X)$.

On \mathbb{R}^{n} say f is of rapid decay if $f(x)(1+\|x\|)^{N}$ is bounded for all N, and say $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ is of Schwartz class if f and all its derivatives are of rapid decay. Write $\mathcal{S}\left(\mathbb{R}^{n}\right)$ for the Schwartz class.

1. Lattices and dual lattices

Let V be an finite-dimensional real vector space.
Exercise 1. Let $\Lambda<V$ be an (abstract) subgroup. Then:
(1) Λ is discrete iff it is of the form $\bigoplus_{i=1}^{k} \mathbb{Z} \underline{v}_{i}$ where $\left\{\underline{v}_{i}\right\}_{i=1}^{k} \subset V$ are linearly independent.
(2) Λ is discrete and V / Λ is compact $\operatorname{iff} k=\operatorname{dim} V$, that is if Λ is the \mathbb{Z}-span of a basis. In this case we call Λ a lattice.
(3) When $\Lambda<V$ is a lattice we have an isomorphism $V / \Lambda \simeq\left(S^{1}\right)^{n}=\mathbb{T}^{n}$ where $n=\operatorname{dim} V$.

Fix a lattice $\Lambda<V$, and write \mathbb{T} for the torus V / Λ.
Exercise 2. Let $V^{*}=\operatorname{Hom}_{\mathbb{R}}(V ; \mathbb{R})$ be the dual vector space, and let $\Lambda^{*}=\operatorname{Hom}_{\mathbb{Z}}(\Lambda ; \mathbb{Z})$ be the dual group.
(1) Every $k \in \Lambda^{*}$ extends uniquely to an element $\varphi \in V^{*}$.
(2) The extension above induces an embedding $\Lambda^{*} \hookrightarrow V^{*}$ whose image is $\left\{\varphi \in V^{*} \mid \varphi(\Lambda) \subset \mathbb{Z}\right\}$ and we identify Λ^{*} with this image.
(3) Under this identification Λ^{*} is a lattice in V^{*}, which we call the dual lattice.

Definition. $L^{2}(\mathbb{T})$ and $L^{2}\left(\Lambda^{*}\right)$ will denote the L^{2}-spaces with respect to the Haar probability measure and counting measure, respectively.

Exercise 3 (Functional analysis). (1) Show that $C(\mathbb{T})$ is dense in $L^{2}(\mathbb{T})$.
(2) Show that $C_{\mathrm{c}}\left(\Lambda^{*}\right)$ is dense in $L^{2}\left(\Lambda^{*}\right)$.

Definition. For $f \in C\left(\mathbb{R}^{n}\right)$ set $\left(\Pi_{\Lambda} f\right)(x)=\sum_{\lambda \in \Lambda} f(x+\Lambda)$.
Exercise 4. Suppose f decays faster that $(1+|x|)^{N}$ for N large enough. Show that the series above converges absolutely and that $\Pi_{\Lambda} f \in C(\mathbb{T})$. If f is j times differentiable and the j th derivative decays fast enough show that $\Pi_{\Lambda} f \in C^{j}(\mathbb{T})$. In particular if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ then $\Pi_{\Lambda} f \in C^{\infty}(\mathbb{T})$.

Now fix a Haar measure $d x$ on V.
Definition. A fundamental domain for V / Λ is an open subset $\mathcal{F} \subset V$ such that:
(1) The translates $\mathcal{F}+\Lambda$ are disjoint, and the translates $\overline{\mathcal{F}}+\Lambda$ cover V.
(2) $\partial \mathcal{F}$ has measure zero.

We also call "fundamental domain" any set between \mathcal{F} and its closure, that is any set whose interior is a fundamental domain and which is contained in the closure of its interior.

Exercise 5 (Fundamental domains). (1) Let $\Lambda=\operatorname{Span}_{\mathbb{Z}}\left\{\underline{v}_{i}\right\}_{i=1}^{n}$ for a basis $\left\{\underline{v}_{i}\right\}_{i=1}^{n} \subset V$. Show that $\left\{\sum_{i=1}^{n} a_{i} \underline{v}_{i} \left\lvert\, \underline{a} \in\left(-\frac{1}{2}, \frac{1}{2}\right)\right.\right\}$ and $\left\{\sum_{i=1}^{n} a_{i} \underline{v}_{i} \mid \underline{a} \in[0,1)\right\}$ are fundamental domains.
(2) Suppose that V is an inner product space and let $x_{0} \in V$. Show that the Diriclet domain

$$
\mathcal{F}_{\mathrm{D}}=\left\{x \in V\left|\forall \lambda \in \Lambda:\left|x-x_{0}\right| \leq\left|(x+\lambda)-x_{0}\right|\right\}\right.
$$

is a fundamental domain.
We now connect integration on V and on V / Λ.
Exercise 6 (Integration). (1) Show that there is a unique Haar measure on \mathbb{T} (which we will also denote $d x$) such that $\int_{\mathbb{T}}\left(\Pi_{\Lambda} f\right) d x=\int_{V} f d x$.
(2) Let \mathcal{F} be a fundamental domain. Show that for this measure $\operatorname{vol}(\mathbb{T})=\operatorname{vol}(\mathcal{F})$, and in particular that all fundamental domains have the same finite volume.

Definition. We call $\operatorname{vol}(\mathbb{T})$ the covolume of Λ.

2. Fourier Series and Fourier inversion on \mathbb{R}^{n} / Λ

Write $k x$ for the pairing between $k \in V^{*}$ and $x \in V$.
Exercise 7 (Trigonometric polynomials). (1) Let $k \in \Lambda^{*}$. Show that the function $V \ni x \mapsto$ $e(k x)$ is Λ-invariant and descends to a continuous group homomorphism $e_{k}: \mathbb{T} \rightarrow S^{1}$.
(2) Show that $k \mapsto e_{k}$ is an injective group homomorphism $\Lambda^{*} \hookrightarrow \operatorname{Hom}\left(\mathbb{T}, S^{1}\right)$.
(3) Show that $\left\{e_{k}\right\}_{k \in \Lambda^{*}} \subset \mathbb{C}(\mathbb{T})$ are linearly independent.

Hint: Evaluate a linear combination $\sum a_{k} e_{k}=0$ of shortest length at two different $x \in \mathbb{T}$.
(4) Let \mathcal{P} be the algebra of continuous functions on \mathbb{T} generated by the e_{k}. Show that \mathcal{P} is simply the linear span of these characters.
(5) Let $x \in \mathbb{T}$ be non-zero. Show that there exists $k \in \Lambda^{*}$ such that $e(k x) \neq 1$. Hint: $\Lambda^{* *}=\Lambda$.
(6) Show that \mathcal{P} separates the points of \mathbb{T} and contains 1 . By the Stone-Weierstrass Theorem it follows that \mathcal{P} is dense in $C(\mathbb{T})$.

Exercise 8 (Orthogonality of characters). Recall we normalized the Haar measure of \mathbb{T} to be a probability measure.
(1) For $k \in \Lambda^{*}$ show that $\frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}} e(k x) d x=\left\{\begin{array}{ll}1 & k=0 \\ 0 & k \neq 0\end{array}\right.$.
(2) Conclude that for $k, \ell \in \Lambda^{*}$ one has $\frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}} \overline{e(k x)} e(\ell x) d x=\delta_{k \ell}$.

Definition. For $g \in C_{\mathrm{c}}\left(\Lambda^{*}\right)$ set $\check{g}(x)=\sum_{k \in \Lambda^{*}} g_{k}(k) e(k x)$.
Exercise 9 (The inverse map). We show that $g \mapsto \check{g}$ extends to an isometric isomorphism $L^{2}\left(\Lambda^{*}\right) \rightarrow$ $L^{2}(\mathbb{T})$.
(1) (Parseval's identity 1) For $g \in C_{\mathrm{C}}\left(\Lambda^{*}\right)$ show that $\|\check{g}\|_{L^{2}(\mathbb{T})}=\|g\|_{L^{2}\left(\Lambda^{*}\right)}$, that is that $\frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}}|\check{g}(x)|^{2} d x=$ $\sum_{k \in \Lambda^{*}}|g(k)|^{2}$.
(2) (Parseval's identity 2) For $g \in L^{2}\left(\Lambda^{*}\right)$ show that the series $\check{g}=\sum_{k \in \Lambda^{*}} g_{k} e_{k}$ converges absolutely in $L^{2}(\mathbb{T})$ and that the resulting map $g \rightarrow \check{g}$ is an isometric embedding $L^{2}\left(\Lambda^{*}\right) \rightarrow$ $L^{2}(\mathbb{T})$. Show that the image is a closed subspace.

- Observe that $\check{g} \in L^{2}(\mathbb{T})$ is only an equivalence class of functions. In particular the statement $\check{g}(x)=\sum_{k} g_{k} e(k x)$ need not make sense, and the series of real numbers on the right need not converge.
(3) Let $f \in L^{2}(\mathbb{T})$ be of norm one and orthogonal to the image of this map. Approximating f by a trigonometric polynomial show that $(f, f)=0$ and derive a contradiction. Conclude that $g \mapsto \check{g}$ is an isometric isomorphism.
(4) (Decay vs smoothness) We now consider the case where g decays polynomially, in that $|g(k)| \leq C(1+|k|)^{-N}$. Show given j for all sufficiently large N if g decays polynomially with exponent N then $\check{g} \in C^{j}(T T)$ and for a multi-index α with $|\alpha| \leq j$ we have

$$
\left(\partial^{\alpha} \check{g}\right)(x)=\sum_{k \in \Lambda^{*}}(2 \pi i)^{|\alpha|} k^{\alpha} g_{k} e(k x)
$$

in the sense that the series on the right converges absolutely to the value on the left.
Definition. For $f \in L^{2}(\mathbb{T})$ and $k \in \Lambda^{*}$ set $\hat{f}(k)=\frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}} f(x) e(-k x) d x$.
Exercise 10 (The direct map). (1) Show that $|\hat{f}(k)| \leq\|f\|_{L^{2}(\mathbb{T})}$. Conclude that $|\hat{f}(k)| \leq\|f\|_{L^{\infty}(\mathbb{T})}$ also.
(2) For $g \in C_{\mathrm{c}}\left(\Lambda^{*}\right)$ show that $\hat{g}(k)=g(k)$. Show that the same holds for $g \in L^{2}\left(\Lambda^{*}\right)$.
(3) Conclude that the map $f \mapsto \hat{f}$ takes values in $L^{2}\left(\Lambda^{*}\right)$ and is the inverse to the map $g \mapsto \check{g}$.

Exercise 11 (Smooth functions). (1) Integrating by parts, show that for $k \neq 0$ and $f \in C^{2 j}(\mathbb{T})$ we have $|\hat{f}(k)| \leq \frac{1}{|2 \pi k|^{2 j}}\left\|\triangle^{j} f\right\|_{L^{\infty}(\mathbb{T})}$.
(2) Assume now that $f \in C^{\infty}(\mathbb{T})$. Show that $F^{(\alpha)}(x)=\sum_{k \in \Lambda^{*}}(2 \pi i k)^{\alpha} \hat{f}(k) e(k x)$ converges uniformly for all multi-indices α.
(3) Integrating term-by-term show that $F^{(\alpha)}$ is the α th derivative of $F^{(0)}$.
(4) Show that $F^{(0)}=f$ pointwise.

3. The Poisson Summation Formula

Definition. For $f \in L^{1}(V)$ and $k \in V^{*}$ set $\hat{f}(k)=\int_{V} f(x) e(-k x) d x$ and call this the Fourier transform of f.

Exercise 12 (The Fourier transform). Let $f \in L^{1}(V)$
(1) Show that $\|\hat{f}\|_{L^{\infty}\left(V^{*}\right)} \leq\|f\|_{L^{1}(V)}$.
(2) Show that $\hat{f} \in C(V)$.

Hint: The bounded convergence theorem.
(3) On $V=\mathbb{R}$ let $f=\exp (-|x|)$. Show that $\hat{f}(k)=\frac{2}{1+4 \pi^{2} k^{2}}$.
(4) Let $\Re(\alpha)>0$ and let $f(x)=\exp \left\{-\pi \alpha x^{2}\right\}$. Show that $\hat{f}(k)=\sqrt{\frac{1}{\alpha}} \exp \left\{-\frac{\pi}{\alpha} k^{2}\right\}$ where we take the branch of the square root with a cut at $(-\infty, 0]$.
Hint: Shift contours to reduce the problem to the known formula $\int_{\mathbb{R}} \exp \left(-\alpha x^{2}\right) d x=\sqrt{\frac{\pi}{\alpha}}$.
(5) Let $Q \in M_{n}(\mathbb{R})$ be a positive-definite symmetric matrix, and let $f(x)=\exp (-2 \pi\langle x| Q|x\rangle)$. Show that $\hat{f}(k)=2^{-n / 2}(\operatorname{det} Q)^{-1 / 2} \exp \left\{-2 \pi\langle k| Q^{-1}|k\rangle\right\}$.

We now prove our main theorem.
Exercise 13 (The Poisson Summation Formula). Let $f \in C\left(\mathbb{R}^{n}\right)$ decay quickly enough.
(1) For $k \in \Lambda^{*}$ show that $\widehat{\Pi_{\Lambda} f}(k)=\frac{1}{\operatorname{covol}(\Lambda)} \hat{f}(k)$ where the first hat is the Fourier transform on \mathbb{T} and the second is the one on V.

- Show that $\Pi_{\Lambda} f(x)=\frac{1}{\operatorname{covol}(\Lambda)} \sum_{\Lambda^{*}} \hat{f}(k) e(k x)$. Conclude that:

$$
\sum_{v \in \Lambda} f(v)=\frac{1}{\operatorname{vol}(\Lambda)} \sum_{k \in \Lambda^{*}} f(k)
$$

4. The Fourier transform and Fourier inversion on \mathbb{R}^{n}

Exercise 14 (Convolution). For functions f, g on V set $(f * g)(x)=\int_{V} f(x+y) g(y)$ d y if the integral converges absolutely.
(1) Show that $g * f=f * g$ whenver either is defined, and that the operation is bilinear, commutative and associative where defined.
(2) Show that $\|f * g\|_{L^{1}} \leq\|f\|_{L^{1}}\|g\|_{L^{1}}$, and conclude that convolution turns $L^{1}(V)$ into an algebra.
(3) Let $f, g \in L^{1}(V)$. Show that $\widehat{f * g}=\hat{f} \hat{g}$.

Exercise 15 (Smoothness vs decay). (1) Suppose that f and all its partial derivatives up to order j belong to $L^{1}(V)$. Show that for j large enough (depending on N), $|\hat{f}(k)|$ decays polynomially at rate N.
(2) (Riemann-Lebesgue Lemma) Using the density of $C_{\mathrm{c}}^{\infty}(V)$ in $L^{1}(V)$, show that for $f \in$ $L^{1}(V), \hat{f}$ decays at infinity: for every $\varepsilon>0$ there is a compact set outside of which $|\hat{f}(k)|<$ ε.
(3) Suppose that f decays polynomially. Show that for every j there is N such that if $|f(x)| \leq$ $(1+|x|)^{-N}$ then $\hat{f} \in C^{j}\left(V^{*}\right)$.
(4) Suppose that $f \in C_{\mathrm{c}}^{\infty}(V)$. In the integral defining \hat{f}, allow k to range over the complexified dual $\mathbb{C} \otimes_{\mathbb{R}} V^{*}$. Show that \hat{f} extends to an entire function of k.

Exercise 16 (The Schwartz class and Fourier inversion). Let $f \in \mathcal{S}(V)$
(1) Differentiating under the integral sign show that $\hat{f}(k)$ is smooth.
(2) Integrating by parts show that then \hat{f} is of rapid decay.
(3) Combining the two calculations show that $\hat{f} \in \mathcal{S}(V)$.
(4) Applying the PSF to f with the lattice $r \Lambda$ and taking $r \rightarrow \infty$ show that

$$
f(0)=\int_{V^{*}} \hat{f}(k) d k
$$

(5) Let $g(x)=f(x+y)$. Show that $\hat{g}(k)=\hat{f}(k) e(k y)$ and conclude that

$$
f(x)=\int_{V^{*}} \hat{f}(k) e(k x) d k
$$

(6) Use the same methods to establish Parseval's identity: for $f \in \mathcal{S}(V)$,

$$
\|f\|_{L^{2}(V)}=\|\hat{f}\|_{L^{2}\left(V^{*}\right)}
$$

(7) Conclude that the Fourier transform extends to a bijective isometry $\mathcal{F}: L^{2}(V) \rightarrow L^{2}\left(V^{*}\right)$, and that \mathcal{F}^{2} is exactly reflection in the origin (the map that sends $f(x)$ to $f(-x)$).

