FOURIER SERIES AND THE POISSON SUMMATION FORMULA (NOTES FOR MATH 613)

LIOR SILBERMAN

NOTATION

Write S^1 for the circle group $\{z \in \mathbb{C}^{\times} \mid |z| = 1\}$. We use the number theorists' expoendial: for $z \in \mathbb{C}$ write $e(z) \stackrel{\text{def}}{=} e^{2\pi i z}$. All group homomorphisms are assumed to be continuous.

For a topological space X write C(X) for the space of \mathbb{C} -valued continuous functions on X, $C_c(X)$ for its subspace of functions of compact support. If μ is a Radon measure on X and $1 \le p \le \infty$ write $L^p(\mu)$ for the usual space of [equivalence classes of] *p*-integrable functions. We sometimes write $L^p(X)$ when the measure is clear (and note that if $L^p(f\mu) = L^p(\mu)$ if *f* is bounded)

When X is compact, C(X) is complete in the L^{∞} norm and (Stone-Weierstrass) a subalgebra $\mathcal{A} \subset C(X)$ is dense iff it separates points, does not have a common zero, and is closed under conjugation.

On a manifold X write $C^j(X)$ for the space of functions differentiable *j* times with continuous derivatives of order *j*, $C^{\infty}(X) = \bigcap_j C^j(X)$, and $C_c^{\infty}(X) = C^{\infty}(X) \cap C_c(X)$.

On \mathbb{R}^n say f is of *rapid decay* if $f(x)(1+||x||)^N$ is bounded for all N, and say $f \in C^{\infty}(\mathbb{R}^n)$ is of *Schwartz class* if f and all its derivatives are of rapid decay. Write $S(\mathbb{R}^n)$ for the Schwartz class.

1. LATTICES AND DUAL LATTICES

Let *V* be an finite-dimensional real vector space.

Exercise 1. Let $\Lambda < V$ be an (abstract) subgroup. Then:

- (1) Λ is discrete iff it is of the form $\bigoplus_{i=1}^{k} \mathbb{Z}_{\underline{V}_{i}}$ where $\{\underline{v}_{i}\}_{i=1}^{k} \subset V$ are linearly independent.
- (2) Λ is discrete and V/Λ is compact iff $k = \dim V$, that is if Λ is the \mathbb{Z} -span of a basis. In this case we call Λ a *lattice*.
- (3) When $\Lambda < V$ is a lattice we have an isomorphism $V/\Lambda \simeq (S^1)^n = \mathbb{T}^n$ where $n = \dim V$.

Fix a lattice $\Lambda < V$, and write \mathbb{T} for the torus V/Λ .

Exercise 2. Let $V^* = \text{Hom}_{\mathbb{R}}(V;\mathbb{R})$ be the dual vector space, and let $\Lambda^* = \text{Hom}_{\mathbb{Z}}(\Lambda;\mathbb{Z})$ be the dual group.

- (1) Every $k \in \Lambda^*$ extends uniquely to an element $\varphi \in V^*$.
- (2) The extension above induces an embedding $\Lambda^* \hookrightarrow V^*$ whose image is $\{\varphi \in V^* \mid \varphi(\Lambda) \subset \mathbb{Z}\}$ and we identify Λ^* with this image.
- (3) Under this identification Λ^* is a lattice in V^* , which we call the *dual lattice*.

Definition. $L^2(\mathbb{T})$ and $L^2(\Lambda^*)$ will denote the L^2 -spaces with respect to the Haar probability measure and counting measure, respectively.

Exercise 3 (Functional analysis). (1) Show that $C(\mathbb{T})$ is dense in $L^2(\mathbb{T})$. (2) Show that $C_c(\Lambda^*)$ is dense in $L^2(\Lambda^*)$.

Definition. For $f \in C(\mathbb{R}^n)$ set $(\Pi_{\Lambda} f)(x) = \sum_{\lambda \in \Lambda} f(x + \Lambda)$.

Exercise 4. Suppose f decays faster that $(1 + |x|)^N$ for N large enough. Show that the series above converges absolutely and that $\Pi_{\Lambda} f \in C(\mathbb{T})$. If f is j times differentiable and the jth derivative decays fast enough show that $\Pi_{\Lambda} f \in C^j(\mathbb{T})$. In particular if $f \in S(\mathbb{R}^n)$ then $\Pi_{\Lambda} f \in C^{\infty}(\mathbb{T})$.

Now fix a Haar measure dx on V.

Definition. A *fundamental domain* for V/Λ is an open subset $\mathcal{F} \subset V$ such that:

- (1) The translates $\mathcal{F} + \Lambda$ are disjoint, and the translates $\overline{\mathcal{F}} + \Lambda$ cover *V*.
- (2) $\partial \mathcal{F}$ has measure zero.

We also call "fundamental domain" any set between \mathcal{F} and its closure, that is any set whose interior is a fundamental domain and which is contained in the closure of its interior.

Exercise 5 (Fundamental domains). (1) Let $\Lambda = \operatorname{Span}_{\mathbb{Z}} \{\underline{v}_i\}_{i=1}^n$ for a basis $\{\underline{v}_i\}_{i=1}^n \subset V$. Show that $\{\sum_{i=1}^n a_i \underline{v}_i \mid \underline{a} \in (-\frac{1}{2}, \frac{1}{2})\}$ and $\{\sum_{i=1}^n a_i \underline{v}_i \mid \underline{a} \in [0, 1)\}$ are fundamental domains.

(2) Suppose that *V* is an inner product space and let $x_0 \in V$. Show that the *Diriclet domain*

$$\mathcal{F}_{\mathrm{D}} = \{ x \in V \mid \forall \lambda \in \Lambda : |x - x_0| \le |(x + \lambda) - x_0| \}$$

is a fundamental domain.

We now connect integration on V and on V/Λ .

- **Exercise 6** (Integration). (1) Show that there is a unique Haar measure on \mathbb{T} (which we will also denote dx) such that $\int_{\mathbb{T}} (\Pi_{\Lambda} f) dx = \int_{V} f dx$.
 - (2) Let \mathcal{F} be a fundamental domain. Show that for this measure $vol(\mathbb{T}) = vol(\mathcal{F})$, and in particular that all fundamental domains have the same finite volume.

Definition. We call $vol(\mathbb{T})$ the *covolume* of Λ .

2. FOURIER SERIES AND FOURIER INVERSION ON \mathbb{R}^n/Λ

Write kx for the pairing between $k \in V^*$ and $x \in V$.

- **Exercise 7** (Trigonometric polynomials). (1) Let $k \in \Lambda^*$. Show that the function $V \ni x \mapsto e(kx)$ is Λ -invariant and descends to a continuous group homomorphism $e_k \colon \mathbb{T} \to S^1$.
 - (2) Show that $k \mapsto e_k$ is an injective group homomorphism $\Lambda^* \hookrightarrow \text{Hom}(\mathbb{T}, S^1)$.
 - (3) Show that {e_k}_{k∈Λ*} ⊂ C(T) are linearly independent.
 Hint: Evaluate a linear combination Σa_ke_k = 0 of shortest length at two different x ∈ T.
 - (4) Let \mathcal{P} be the algebra of continuous functions on \mathbb{T} generated by the e_k . Show that \mathcal{P} is simply the linear span of these characters.
 - (5) Let $x \in \mathbb{T}$ be non-zero. Show that there exists $k \in \Lambda^*$ such that $e(kx) \neq 1$. *Hint:* $\Lambda^{**} = \Lambda$.

(6) Show that \mathcal{P} separates the points of \mathbb{T} and contains 1. By the Stone-Weierstrass Theorem it follows that \mathcal{P} is dense in $C(\mathbb{T})$.

Exercise 8 (Orthogonality of characters). Recall we normalized the Haar measure of \mathbb{T} to be a probability measure.

(1) For
$$k \in \Lambda^*$$
 show that $\frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}} e(kx) dx = \begin{cases} 1 & k = 0\\ 0 & k \neq 0 \end{cases}$.
(2) Conclude that for $k, \ell \in \Lambda^*$ one has $\frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}} \overline{e(kx)} e(\ell x) dx = \delta_{k\ell}$.

Definition. For $g \in C_c(\Lambda^*)$ set $\check{g}(x) = \sum_{k \in \Lambda^*} g_k(k) e(kx)$.

Exercise 9 (The inverse map). We show that $g \mapsto \check{g}$ extends to an isometric isomorphism $L^2(\Lambda^*) \to L^2(\mathbb{T})$.

- (1) (Parseval's identity 1) For $g \in C_c(\Lambda^*)$ show that $\|\check{g}\|_{L^2(\mathbb{T})} = \|g\|_{L^2(\Lambda^*)}$, that is that $\frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}} |\check{g}(x)|^2 dx = \sum_{k \in \Lambda^*} |g(k)|^2$.
- (2) (Parseval's identity 2) For g ∈ L²(Λ*) show that the series ğ = Σ_{k∈Λ*} g_ke_k converges absolutely in L²(T) and that the resulting map g → ğ is an isometric embedding L²(Λ*) → L²(T). Show that the image is a closed subspace.
 - Observe that ğ ∈ L²(T) is only an equivalence class of functions. In particular the statement ğ(x) = Σ_k g_ke(kx) need not make sense, and the series of real numbers on the right need not converge.
- (3) Let $f \in L^2(\mathbb{T})$ be of norm one and orthogonal to the image of this map. Approximating f by a trigonometric polynomial show that (f, f) = 0 and derive a contradiction. Conclude that $g \mapsto \check{g}$ is an isometric isomorphism.
- (4) (Decay vs smoothness) We now consider the case where g decays polynomially, in that $|g(k)| \le C(1+|k|)^{-N}$. Show given j for all sufficiently large N if g decays polynomially with exponent N then $\check{g} \in C^j(TT)$ and for a multi-index α with $|\alpha| \le j$ we have

$$(\partial^{\alpha}\check{g})(x) = \sum_{k\in\Lambda^*} (2\pi i)^{|\alpha|} k^{\alpha} g_k e(kx)$$

in the sense that the series on the right converges absolutely to the value on the left.

Definition. For $f \in L^2(\mathbb{T})$ and $k \in \Lambda^*$ set $\hat{f}(k) = \frac{1}{\operatorname{vol}(\mathbb{T})} \int_{\mathbb{T}} f(x) e(-kx) dx$.

- **Exercise 10** (The direct map). (1) Show that $|\hat{f}(k)| \leq ||f||_{L^2(\mathbb{T})}$. Conclude that $|\hat{f}(k)| \leq ||f||_{L^{\infty}(\mathbb{T})}$ also.
 - (2) For $g \in C_c(\Lambda^*)$ show that $\hat{g}(k) = g(k)$. Show that the same holds for $g \in L^2(\Lambda^*)$.
 - (3) Conclude that the map $f \mapsto \hat{f}$ takes values in $L^2(\Lambda^*)$ and is the inverse to the map $g \mapsto \check{g}$.
- **Exercise 11** (Smooth functions). (1) Integrating by parts, show that for $k \neq 0$ and $f \in C^{2j}(\mathbb{T})$ we have $|\hat{f}(k)| \leq \frac{1}{|2\pi k|^{2j}} ||\Delta^j f||_{L^{\infty}(\mathbb{T})}$.
 - (2) Assume now that $f \in C^{\infty}(\mathbb{T})$. Show that $F^{(\alpha)}(x) = \sum_{k \in \Lambda^*} (2\pi i k)^{\alpha} \hat{f}(k) e(kx)$ converges uniformly for all multi-indices α .

- (3) Integrating term-by-term show that $F^{(\alpha)}$ is the α th derivative of $F^{(0)}$.
- (4) Show that $F^{(0)} = f$ pointwise.

3. THE POISSON SUMMATION FORMULA

Definition. For $f \in L^1(V)$ and $k \in V^*$ set $\hat{f}(k) = \int_V f(x)e(-kx)dx$ and call this the *Fourier trans*form of f.

Exercise 12 (The Fourier transform). Let $f \in L^1(V)$

- (1) Show that $\|\hat{f}\|_{L^{\infty}(V^*)} \le \|f\|_{L^1(V)}$.
- (2) Show that $\hat{f} \in C(V)$. *Hint*: The bounded convergence theorem.
- (3) On $V = \mathbb{R}$ let $f = \exp(-|x|)$. Show that $\hat{f}(k) = \frac{2}{1+4\pi^2 k^2}$.
- (4) Let $\Re(\alpha) > 0$ and let $f(x) = \exp\{-\pi\alpha x^2\}$. Show that $\hat{f}(k) = \sqrt{\frac{1}{\alpha}}\exp\{-\frac{\pi}{\alpha}k^2\}$ where we take the branch of the square root with a cut at $(-\infty, 0]$.

Hint: Shift contours to reduce the problem to the known formula $\int_{\mathbb{R}} \exp(-\alpha x^2) dx = \sqrt{\frac{\pi}{\alpha}}$.

(5) Let $Q \in M_n(\mathbb{R})$ be a positive-definite symmetric matrix, and let $f(x) = \exp\left(-2\pi \langle x | Q | x \rangle\right)$. Show that $\hat{f}(k) = 2^{-n/2} (\det Q)^{-1/2} \exp\left\{-2\pi \langle k | Q^{-1} | k \rangle\right\}$.

We now prove our main theorem.

Exercise 13 (The Poisson Summation Formula). Let $f \in C(\mathbb{R}^n)$ decay quickly enough.

- (1) For $k \in \Lambda^*$ show that $\widehat{\Pi_{\Lambda}f}(k) = \frac{1}{\operatorname{covol}(\Lambda)}\widehat{f}(k)$ where the first hat is the Fourier transform on \mathbb{T} and the second is the one on *V*.
 - Show that $\Pi_{\Lambda} f(x) = \frac{1}{\operatorname{covol}(\Lambda)} \sum_{\Lambda^*} \hat{f}(k) e(kx)$. Conclude that:

$$\sum_{\nu \in \Lambda} f(\nu) = \frac{1}{\operatorname{vol}(\Lambda)} \sum_{k \in \Lambda^*} f(k).$$

4. The Fourier transform and Fourier inversion on \mathbb{R}^n

Exercise 14 (Convolution). For functions f, g on V set $(f * g)(x) = \int_V f(x+y)g(y) dy$ if the integral converges absolutely.

- (1) Show that g * f = f * g whenver either is defined, and that the operation is bilinear, commutative and associative where defined.
- (2) Show that $||f * g||_{L^1} \le ||f||_{L^1} ||g||_{L^1}$, and conclude that convolution turns $L^1(V)$ into an algebra.
- (3) Let $f, g \in L^1(V)$. Show that $\widehat{f * g} = \widehat{f}\widehat{g}$.
- **Exercise 15** (Smoothness vs decay). (1) Suppose that f and all its partial derivatives up to order j belong to $L^1(V)$. Show that for j large enough (depending on N), $|\hat{f}(k)|$ decays polynomially at rate N.

- (2) (Riemann–Lebesgue Lemma) Using the density of $C_c^{\infty}(V)$ in $L^1(V)$, show that for $f \in L^1(V)$, \hat{f} decays at infinity: for every $\varepsilon > 0$ there is a compact set outside of which $|\hat{f}(k)| < \varepsilon$.
- (3) Suppose that *f* decays polynomially. Show that for every *j* there is *N* such that if $|f(x)| \le (1+|x|)^{-N}$ then $\hat{f} \in C^j(V^*)$.
- (4) Suppose that f ∈ C[∞]_c(V). In the integral defining f̂, allow k to range over the complexified dual C ⊗_R V*. Show that f̂ extends to an entire function of k.

Exercise 16 (The Schwartz class and Fourier inversion). Let $f \in \mathcal{S}(V)$

- (1) Differentiating under the integral sign show that $\hat{f}(k)$ is smooth.
- (2) Integrating by parts show that then \hat{f} is of rapid decay.
- (3) Combining the two calculations show that $\hat{f} \in \mathcal{S}(V)$.
- (4) Applying the PSF to f with the lattice $r\Lambda$ and taking $r \rightarrow \infty$ show that

$$f(0) = \int_{V^*} \hat{f}(k) dk.$$

(5) Let g(x) = f(x+y). Show that $\hat{g}(k) = \hat{f}(k)e(ky)$ and conclude that $f(x) = \int \hat{f}(k)e(kx)dk.$

$$J_{V^*}$$

(6) Use the same methods to establish *Parseval's identity*: for $f \in \mathcal{S}(V)$,

$$||f||_{L^2(V)} = ||\hat{f}||_{L^2(V^*)}.$$

(7) Conclude that the Fourier transform extends to a bijective isometry $\mathcal{F}: L^2(V) \to L^2(V^*)$, and that \mathcal{F}^2 is exactly reflection in the origin (the map that sends f(x) to f(-x)).