
FOURIER SERIES AND THE POISSON SUMMATION FORMULA
(NOTES FOR MATH 613)

LIOR SILBERMAN

NOTATION

Write S1 for the circle group {z ∈ C× | |z|= 1}. We use the number theorists’ expoenntial: for

z ∈ C write e(z) def
= e2πiz. All group homomorphisms are assumed to be continuous.

For a topological space X write C(X) for the space of C-valued continuous functions on X , Cc(X)

for its subspace of functions of compact support. If µ is a Radon measure on X and 1 ≤ p ≤ ∞

write Lp(µ) for the usual space of [equivalence classes of] p-integrable functions. We sometimes
write Lp(X) when the measure is clear (and note that if Lp( f µ) = Lp(µ) if f is bounded)

When X is compact, C(X) is complete in the L∞ norm and (Stone-Weierstrass) a subalgebra
A ⊂ C(X) is dense iff it separates points, does not have a common zero, and is closed under
conjugation.

On a manifold X write C j(X) for the space of functions differentiable j times with continuous
derivatives of order j, C∞(X) = ∩ jC j(X), and C∞

c (X) =C∞(X)∩Cc(X).
On Rn say f is of rapid decay if f (x)(1+‖x‖)N is bounded for all N, and say f ∈C∞(Rn) is of

Schwartz class if f and all its derivatives are of rapid decay. Write S(Rn) for the Schwartz class.

1. LATTICES AND DUAL LATTICES

Let V be an finite-dimensional real vector space.

Exercise 1. Let Λ <V be an (abstract) subgroup. Then:
(1) Λ is discrete iff it is of the form

⊕k
i=1Zvi where {vi}

k
i=1 ⊂V are linearly independent.

(2) Λ is discrete and V/Λ is compact iff k = dimV , that is if Λ is the Z-span of a basis. In this
case we call Λ a lattice.

(3) When Λ <V is a lattice we have an isomorphism V/Λ'
(
S1)n

= Tn where n = dimV .

Fix a lattice Λ <V , and write T for the torus V/Λ.

Exercise 2. Let V ∗ = HomR(V ;R) be the dual vector space, and let Λ∗ = HomZ(Λ;Z) be the dual
group.

(1) Every k ∈ Λ∗ extends uniquely to an element ϕ ∈V ∗.
(2) The extension above induces an embedding Λ∗ ↪→V ∗ whose image is {ϕ ∈V ∗ | ϕ(Λ)⊂ Z}

and we identify Λ∗ with this image.
(3) Under this identification Λ∗ is a lattice in V ∗, which we call the dual lattice.

Definition. L2(T) and L2(Λ∗) will denote the L2-spaces with respect to the Haar probability mea-
sure and counting measure, respectively.
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Exercise 3 (Functional analysis). (1) Show that C(T) is dense in L2(T).
(2) Show that Cc(Λ

∗) is dense in L2(Λ∗).

Definition. For f ∈C(Rn) set (ΠΛ f )(x) = ∑λ∈Λ f (x+Λ).

Exercise 4. Suppose f decays faster that (1+ |x|)N for N large enough. Show that the series above
converges absolutely and that ΠΛ f ∈ C(T). If f is j times differentiable and the jth derivative
decays fast enough show that ΠΛ f ∈C j(T). In particular if f ∈ S(Rn) then ΠΛ f ∈C∞(T).

Now fix a Haar measure dx on V .

Definition. A fundamental domain for V/Λ is an open subset F ⊂V such that:

(1) The translates F +Λ are disjoint, and the translates F +Λ cover V .
(2) ∂F has measure zero.

We also call “fundamental domain” any set between F and its closure, that is any set whose
interior is a fundamental domain and which is contained in the closure of its interior.

Exercise 5 (Fundamental domains). (1) Let Λ = SpanZ {vi}
n
i=1 for a basis {vi}

n
i=1 ⊂V . Show

that
{

∑
n
i=1 aivi | a ∈

(
−1

2 ,
1
2

)}
and {∑n

i=1 aivi | a ∈ [0,1)} are fundamental domains.
(2) Suppose that V is an inner product space and let x0 ∈V . Show that the Diriclet domain

FD = {x ∈V | ∀λ ∈ Λ : |x− x0| ≤ |(x+λ )− x0|}

is a fundamental domain.

We now connect integration on V and on V/Λ.

Exercise 6 (Integration). (1) Show that there is a unique Haar measure on T (which we will
also denote dx) such that

∫
T(ΠΛ f )dx =

∫
V f dx.

(2) Let F be a fundamental domain. Show that for this measure vol(T) = vol(F), and in
particular that all fundamental domains have the same finite volume.

Definition. We call vol(T) the covolume of Λ.

2. FOURIER SERIES AND FOURIER INVERSION ON Rn/Λ

Write kx for the pairing between k ∈V ∗ and x ∈V .

Exercise 7 (Trigonometric polynomials). (1) Let k ∈ Λ∗. Show that the function V 3 x 7→
e(kx) is Λ-invariant and descends to a continuous group homomorphism ek : T→ S1.

(2) Show that k 7→ ek is an injective group homomorphism Λ∗ ↪→ Hom(T,S1).
(3) Show that {ek}k∈Λ∗ ⊂ C(T) are linearly independent.

Hint: Evaluate a linear combination ∑akek = 0 of shortest length at two different x ∈ T.
(4) Let P be the algebra of continuous functions on T generated by the ek. Show that P is

simply the linear span of these characters.
(5) Let x ∈ T be non-zero. Show that there exists k ∈ Λ∗ such that e(kx) 6= 1.

Hint: Λ∗∗ = Λ.
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(6) Show that P separates the points of T and contains 1. By the Stone-Weierstrass Theorem
it follows that P is dense in C(T).

Exercise 8 (Orthogonality of characters). Recall we normalized the Haar measure of T to be a
probability measure.

(1) For k ∈ Λ∗ show that 1
vol(T)

∫
T e(kx)dx =

{
1 k = 0

0 k 6= 0
.

(2) Conclude that for k, ` ∈ Λ∗ one has 1
vol(T)

∫
T e(kx)e(`x)dx = δk`.

Definition. For g ∈Cc(Λ
∗) set ǧ(x) = ∑k∈Λ∗ gk(k)e(kx).

Exercise 9 (The inverse map). We show that g 7→ ǧ extends to an isometric isomorphism L2(Λ∗)→
L2(T).

(1) (Parseval’s identity 1) For g∈Cc(Λ
∗) show that ‖ǧ‖L2(T)= ‖g‖L2(Λ∗), that is that 1

vol(T)
∫
T |ǧ(x)|

2 dx=

∑k∈Λ∗ |g(k)|2.
(2) (Parseval’s identity 2) For g ∈ L2(Λ∗) show that the series ǧ = ∑k∈Λ∗ gkek converges ab-

solutely in L2(T) and that the resulting map g→ ǧ is an isometric embedding L2(Λ∗)→
L2(T). Show that the image is a closed subspace.
• Observe that ǧ ∈ L2(T) is only an equivalence class of functions. In particular the

statement ǧ(x) = ∑k gke(kx) need not make sense, and the series of real numbers on
the right need not converge.

(3) Let f ∈ L2(T) be of norm one and orthogonal to the image of this map. Approximating f
by a trigonometric polynomial show that ( f , f ) = 0 and derive a contradiction. Conclude
that g 7→ ǧ is an isometric isomorphism.

(4) (Decay vs smoothness) We now consider the case where g decays polynomially, in that
|g(k)| ≤C (1+ |k|)−N . Show given j for all sufficiently large N if g decays polynomially
with exponent N then ǧ ∈C j(T T ) and for a multi-index α with |α| ≤ j we have

(∂ α ǧ)(x) = ∑
k∈Λ∗

(2πi)|α|kαgke(kx)

in the sense that the series on the right converges absolutely to the value on the left.

Definition. For f ∈ L2(T) and k ∈ Λ∗ set f̂ (k) = 1
vol(T)

∫
T f (x)e(−kx)dx.

Exercise 10 (The direct map). (1) Show that
∣∣ f̂ (k)∣∣≤‖ f‖L2(T). Conclude that

∣∣ f̂ (k)∣∣≤‖ f‖L∞(T)
also.

(2) For g ∈Cc(Λ
∗) show that ˆ̌g(k) = g(k). Show that the same holds for g ∈ L2(Λ∗).

(3) Conclude that the map f 7→ f̂ takes values in L2(Λ∗) and is the inverse to the map g 7→ ǧ.

Exercise 11 (Smooth functions). (1) Integrating by parts, show that for k 6= 0 and f ∈C2 j(T)
we have

∣∣ f̂ (k)∣∣≤ 1
|2πk|2 j

∥∥4 j f
∥∥

L∞(T).

(2) Assume now that f ∈ C∞(T). Show that F(α)(x) = ∑k∈Λ∗(2πik)α f̂ (k)e(kx) converges
uniformly for all multi-indices α .
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(3) Integrating term-by-term show that F(α) is the αth derivative of F(0).
(4) Show that F(0) = f pointwise.

3. THE POISSON SUMMATION FORMULA

Definition. For f ∈ L1(V ) and k ∈V ∗ set f̂ (k) =
∫

V f (x)e(−kx)dx and call this the Fourier trans-
form of f .

Exercise 12 (The Fourier transform). Let f ∈ L1(V )

(1) Show that
∥∥ f̂
∥∥

L∞(V ∗) ≤ ‖ f‖L1(V ).

(2) Show that f̂ ∈C(V ).
Hint: The bounded convergence theorem.

(3) On V = R let f = exp(−|x|). Show that f̂ (k) = 2
1+4π2k2 .

(4) Let ℜ(α)> 0 and let f (x) = exp
{
−παx2}. Show that f̂ (k) =

√
1
α

exp
{
− π

α
k2} where we

take the branch of the square root with a cut at (−∞,0].

Hint: Shift contours to reduce the problem to the known formula
∫
R exp

(
−αx2)dx =

√
π

α
.

(5) Let Q ∈Mn(R) be a positive-definite symmetric matrix, and let f (x) = exp(−2π 〈x |Q|x〉).
Show that f̂ (k) = 2−n/2 (detQ)−1/2 exp

{
−2π

〈
k
∣∣Q−1

∣∣k〉}.

We now prove our main theorem.

Exercise 13 (The Poisson Summation Formula). Let f ∈C(Rn) decay quickly enough.

(1) For k ∈ Λ∗ show that Π̂Λ f (k) = 1
covol(Λ) f̂ (k) where the first hat is the Fourier transform on

T and the second is the one on V .

• Show that ΠΛ f (x) = 1
covol(Λ) ∑Λ∗ f̂ (k)e(kx). Conclude that:

∑
v∈Λ

f (v) =
1

vol(Λ) ∑
k∈Λ∗

f (k) .

4. THE FOURIER TRANSFORM AND FOURIER INVERSION ON Rn

Exercise 14 (Convolution). For functions f ,g on V set ( f ∗g)(x) =
∫

V f (x+ y)g(y)dy if the inte-
gral converges absolutely.

(1) Show that g ∗ f = f ∗ g whenver either is defined, and that the operation is bilinear, com-
mutative and associative where defined.

(2) Show that ‖ f ∗g‖L1 ≤ ‖ f‖L1 ‖g‖L1 , and conclude that convolution turns L1(V ) into an
algebra.

(3) Let f ,g ∈ L1(V ). Show that f̂ ∗g = f̂ ĝ.

Exercise 15 (Smoothness vs decay). (1) Suppose that f and all its partial derivatives up to
order j belong to L1(V ). Show that for j large enough (depending on N),

∣∣ f̂ (k)∣∣ decays
polynomially at rate N.
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(2) (Riemann–Lebesgue Lemma) Using the density of C∞
c (V ) in L1(V ), show that for f ∈

L1(V ), f̂ decays at infinity: for every ε > 0 there is a compact set outside of which
∣∣ f̂ (k)∣∣<

ε .
(3) Suppose that f decays polynomially. Show that for every j there is N such that if | f (x)| ≤

(1+ |x|)−N then f̂ ∈C j(V ∗).
(4) Suppose that f ∈C∞

c (V ). In the integral defining f̂ , allow k to range over the complexified
dual C⊗RV ∗. Show that f̂ extends to an entire function of k.

Exercise 16 (The Schwartz class and Fourier inversion). Let f ∈ S(V )

(1) Differentiating under the integral sign show that f̂ (k) is smooth.
(2) Integrating by parts show that then f̂ is of rapid decay.
(3) Combining the two calculations show that f̂ ∈ S(V ).
(4) Applying the PSF to f with the lattice rΛ and taking r→ ∞ show that

f (0) =
∫

V ∗
f̂ (k)dk .

(5) Let g(x) = f (x+ y). Show that ĝ(k) = f̂ (k)e(ky) and conclude that

f (x) =
∫

V ∗
f̂ (k)e(kx)dk .

(6) Use the same methods to establish Parseval’s identity: for f ∈ S(V ),

‖ f‖L2(V ) =
∥∥ f̂
∥∥

L2(V ∗) .

(7) Conclude that the Fourier transform extends to a bijective isometry F : L2(V )→ L2(V ∗),
and that F2 is exactly reflection in the origin (the map that sends f (x) to f (−x)).
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