FOURIER SERIES AND THE POISSON SUMMATION FORMULA
(NOTES FOR MATH 613)

LIOR SILBERMAN

NOTATION

Write S! for the circle group {z € C* | |z| = 1}. We use the number theorists’ expoenntial: for

z € C write e(z) &l p2miz A group homomorphisms are assumed to be continuous.

For a topological space X write C(X) for the space of C-valued continuous functions on X, C(X)
for its subspace of functions of compact support. If p is a Radon measure on X and 1 < p < o
write LP () for the usual space of [equivalence classes of] p-integrable functions. We sometimes
write L” (X ) when the measure is clear (and note that if LP(fu) = LP(u) if f is bounded)

When X is compact, C(X) is complete in the L™ norm and (Stone-Weierstrass) a subalgebra
A C C(X) is dense iff it separates points, does not have a common zero, and is closed under
conjugation.

On a manifold X write C/(X) for the space of functions differentiable j times with continuous
derivatives of order j, C*(X) = N,;C/(X), and CZ(X) = C*(X) N Ce(X).

On R” say f is of rapid decay if f(x) (1+||x||)" is bounded for all N, and say f € C=(R") is of
Schwartz class if f and all its derivatives are of rapid decay. Write S(R") for the Schwartz class.

1. LATTICES AND DUAL LATTICES
Let V be an finite-dimensional real vector space.

Exercise 1. Let A <V be an (abstract) subgroup. Then:
(1) A is discrete iff it is of the form @~_, Zv, where {yi}k C V are linearly independent.

i=1
(2) Aisdiscrete and V /A is compact iff k = dimV, that is if A is the Z-span of a basis. In this
case we call A a lattice.

(3) When A <V is a lattice we have an isomorphism V /A ~ (51)'1 = T" where n = dimV.
Fix a lattice A <V, and write T for the torus V /A.

Exercise 2. Let V* = Homg (V;R) be the dual vector space, and let A* = Homgz(A;Z) be the dual
group.

(1) Every k € A* extends uniquely to an element ¢ € V*.

(2) The extension above induces an embedding A* < V* whose image is {¢ € V* | ¢(A) C Z}

and we identify A* with this image.
(3) Under this identification A* is a lattice in V*, which we call the dual lattice.

Definition. L?(T) and L?(A*) will denote the L?-spaces with respect to the Haar probability mea-

sure and counting measure, respectively.
1



Exercise 3 (Functional analysis). (1) Show that C(T) is dense in L*(T).
(2) Show that C.(A*) is dense in L (A*).

Definition. For f € C(R") set (TTpf) (x) = Yca f(xX+A).

Exercise 4. Suppose f decays faster that (1+ |x|)" for N large enough. Show that the series above
converges absolutely and that [Ty f € C(T). If f is j times differentiable and the jth derivative
decays fast enough show that ITy f € C/(T). In particular if f € S(R") then IT, f € C*(T).

Now fix a Haar measure dxon V.

Definition. A fundamental domain for V /A is an open subset F C V such that:

(1) The translates F + A are disjoint, and the translates F+AcoverV.
(2) dF has measure zero.

We also call “fundamental domain” any set between F and its closure, that is any set whose
interior is a fundamental domain and which is contained in the closure of its interior.

Exercise 5 (Fundamental domains). (1) Let A = Spany {v;}}_, for a basis {y;}*_, C V. Show
that {Z;’Zl ayv;|ac (—%, %)} and {Y"_,a;v; | a € [0,1)} are fundamental domains.
(2) Suppose that V is an inner product space and let xo € V. Show that the Diriclet domain

Fp={xeVI|VAeA:|x—xo| <|(x+1)—x0|}
is a fundamental domain.

We now connect integration on V and on V /A.

Exercise 6 (Integration). (1) Show that there is a unique Haar measure on T (which we will
also denote dx) such that [(ITx f)dx = [, fdx.
(2) Let F be a fundamental domain. Show that for this measure vol(T) = vol(F), and in
particular that all fundamental domains have the same finite volume.

Definition. We call vol(T) the covolume of A.

2. FOURIER SERIES AND FOURIER INVERSION ON R"/A

Write kx for the pairing between k € V* andx € V.

Exercise 7 (Trigonometric polynomials). (1) Let k € A*. Show that the function V > x —
e(kx) is A-invariant and descends to a continuous group homomorphism e : T — S*.
(2) Show that k -+ e is an injective group homomorphism A* < Hom(T, S1).
(3) Show that {ex};cp C C(T) are linearly independent.
Hint: Evaluate a linear combination ) ae; = 0 of shortest length at two different x € T.
(4) Let P be the algebra of continuous functions on T generated by the e;. Show that P is
simply the linear span of these characters.
(5) Let x € T be non-zero. Show that there exists k € A* such that e(kx) # 1.
Hint: A** = A.
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(6) Show that P separates the points of T and contains 1. By the Stone-Weierstrass Theorem
it follows that P is dense in C(T).

Exercise 8 (Orthogonality of characters). Recall we normalized the Haar measure of T to be a
probability measure.

1 k=0

0 k#£0

(2) Conclude that for k,£ € A* one has fT e(kx)e(0x)dx = 8.

(1) For k € A* show that fT (kx)dx {

Definition. For g € C.(A*) set (x) = Yrca- gk (k)e(kx).

Exercise 9 (The inverse map). We show that g — ¢ extends to an isometric isomorphism L (A*) —
L*(T).
(1) (Parseval’s identity 1) For g € C¢(A") show that [|§] > (r) = l|g]l 2(s+). that is that S fp 8 (x )| dx =

Yren 18(k).

(2) (Parseval’s identity 2) For g € L?>(A*) show that the series § = ¥ ;ca- gxex converges ab-
solutely in L?(T) and that the resulting map g — ¢ is an isometric embedding L?(A*) —
L?(T). Show that the image is a closed subspace.

e Observe that § € L?(T) is only an equivalence class of functions. In particular the
statement g(x) = Y, gre(kx) need not make sense, and the series of real numbers on
the right need not converge.

(3) Let f € L*(T) be of norm one and orthogonal to the image of this map. Approximating f
by a trigonometric polynomial show that (f, f) = 0 and derive a contradiction. Conclude
that g — ¢ is an isometric isomorphism.

(4) (Decay vs smoothness) We now consider the case where g decays polynomially, in that
lg(k)| < C(1+]k|])™™. Show given j for all sufficiently large N if g decays polynomially
with exponent N then ¢ € C/(TT) and for a multi-index o with |a| < j we have

(0%8) (x) = Y. (27i) *k* gre(kx)
kEA*
in the sense that the series on the right converges absolutely to the value on the left.

Definition. For f € L>(T) and k € A* set f(k) = VO] fT f(x)e(—kx)dx.

Exercise 10 (The direct map). (1) Show that | £ (k)| < [| ]| 12()- Conclude that KGN I =(T)
also.
(2) For g € Cc(A*) show that (k) = g(k). Show that the same holds for g € L>(A*).
(3) Conclude that the map f — f takes values in L? (A*) and is the inverse to the map g — .

Exercise 11 (Smooth functions) (1) Integrating by parts, show that for k # 0 and f € C?/(T)
we have ‘f ’ |2ﬂ;k|21 HA fHLm

(2) Assume now that f € C=(T). Show that F(®)(x) = ¥cp (2mik)* f (k)e(kx) converges
uniformly for all multi-indices .



(3) Integrating term-by-term show that F (@) is the crth derivative of F(0),
(4) Show that F 0) = f pointwise.

3. THE POISSON SUMMATION FORMULA

Definition. For f € L!'(V) and k € V* set f(k) = [;, f(x)e(—kx)dx and call this the Fourier trans-
form of f.

Exercise 12 (The Fourier transform). Let f € L' (V)

(1) Show that HAfHLw(V*) <Al

(2) Show that f € C(V).
Hint: The bounded convergence theorem.

(3) OnV =R let f = exp(— |x|). Show that f(k) = ;522

(4) Let R(c) > 0 and let f(x) = exp { —max? }. Show that f(k) = \/gexp{—gkz} where we
take the branch of the square root with a cut at (—oo,0].
Hint: Shift contours to reduce the problem to the known formula [ exp (—chz) dx = \/g .

(5) Let Q € M,(R) be a positive-definite symmetric matrix, and let f(x) = exp (—27 (x|Q|x)).
Show that (k) = 27"/2 (det@) " "/?exp {27 (k|0 "|k)}.

We now prove our main theorem.

Exercise 13 (The Poisson Summation Formula) Let f € C(R") decay quickly enough.

(1) For k € A* show that [Tz f (k) = v
T and the second is the one on V.

e Show that I f(x) = COVO] ZA* f(k)e(k ) Conclude that:

Zf Vol Z flk

veEA keA*

f (k) where the first hat is the Fourier transform on

4. THE FOURIER TRANSFORM AND FOURIER INVERSION ON R"

Exercise 14 (Convolution). For functions f,g on V set (f*g) (x) = [, f(x+y)g(y)dy if the inte-
gral converges absolutely.

(1) Show that g * f = f * g whenver either is defined, and that the operation is bilinear, com-
mutative and associative where defined.

(2) Show that ||f*gll;1 < |Ifll.llgll,1, and conclude that convolution turns L'(V) into an
algebra.

(3) Let f,g € L'(V). Show that f+g = 7.

Exercise 15 (Smoothness vs decay). (1) Suppose that f and all its partial derivatives up to
order j belong to L! (V). k)‘ decays
polynomially at rate N.




(2) (Riemann-Lebesgue Lemma) Using the density of CZ°(V) in L!'(V), show that for f €
LY(V), f decays at infinity: for every € > 0 there is a compact set outside of which ‘ f(k) | <
E.

(3) Suppose that f decays polynomially. Show that for every j there is N such that if |f(x)| <
(1+|x])™ then 7 € C/(V*).

(4) Suppose that f € CZ(V). In the integral defining f, allow k to range over the complexified
dual C ®g V*. Show that f extends to an entire function of k.

Exercise 16 (The Schwartz class and Fourier inversion). Let f € S(V)

(1) Differentiating under the integral sign show that f (k) is smooth.

(2) Integrating by parts show that then f is of rapid decay.

(3) Combining the two calculations show that f € S(V).

(4) Applying the PSF to f with the lattice rA and taking r — oo show that

A

70) = | Ftear.
(5) Let g(x) = f(x+y). Show that g(k) = f(k)e(ky) and conclude that
10 = [ Fjelex)a.
V*
(6) Use the same methods to establish Parseval’s identity: for f € S(V),

12y = 1]l 2y -

(7) Conclude that the Fourier transform extends to a bijective isometry F: L2(V) — L*(V*),
and that F? is exactly reflection in the origin (the map that sends f(x) to f(—x)).
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