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Preface

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. What is a modular form?

• Holomorphic function satisfying a periodicity condition.
• Generating function for an arithemetic function.
• Section of a line bundle on a 1-dimensional complex manifold
• Section of an algebraic line bundle on a 1-dimensional complex algebraic variety
• Solution to a PDE satisfying certain boundary conditions
• Irreducible representation of SL2(R) acting on L2(Γ\SL2(R))
• Irreducible representation of SL2(A) acting on L2(SL2(Q)\SL2(A))
• `-adic representation of Gal(Q̄ : Q).
• Euler product of degree 2 satisfying certain functional equations.
• Homology / cohomology class on a Riemann surface.
• Class in the group cohomology of an arithmetic group.

Pre-requisites.
• Complex analysis
• Real analysis
• Group theory
• Elementary number theory
• Some topology

0.2. Course plan

• Doubly periodic functions; holomorphism Eisenstein series; the space of lattices.
• Theta functions and q-series.
• Hyperbolic geometry and Fuchsian groups.
• Holomorphic forms and Fourier coefficients.
• Hecke operators.
• The Hecke L-series and Weil’s converse theorem.
• Other topics.

References. These notes were constructed mainly using the books of Miyake and Diamond-
Shurman. The chapter on Fuchsian groups is based on the book of Katok. Other references include:

• Iwaniec
• Iwaniec
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• Iwaniec-Kowalski
• Shimura73
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CHAPTER 1

Introduction
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Math 613: Problem set 1 (due 15/9/09)

Some number theory

1. For a commutative ring R write R× for the group of invertible elements, GLn(R) for the group
{g ∈Mn(R) | detg ∈ R×}, and SLn(R) for {g ∈Mn(R) | detg = 1}.
(a) Show that GLn(Z), GLn(Z/NZ) are the automorphism groups of the additive groups of

the rings Zn, (Z/NZ)n respectively.
OPT Show that GLn(R) is the automorphism group of the R-module Rn.
(b) Let N1,N2 be relatively prime and let N = N1N2. Show that GLn(Z/NZ)'GLn(Z/N1Z)×

GLn(Z/N2Z).
(c) Show that the maps SL2(Z)→ SL2(Z/NZ) (reduction mod N) are surjective.

Hint: Given γ̄ ∈ SL2(Z/NZ) choose a pre-image γ ∈ M2(Z) such that the entries in the
bottom row of γ are relatively prime.

(d) Find the image of the map GL2(Z)→ GL2(Z/NZ).
Hint: What is Z×?

OPT Do parts (c),(d) for SLn, GLn.
OPT Do parts (c),(d) replacing Z with the ring of integers of a number field and N with an

ideal in the ring of integers.

2. Let G be a group, H charG a characteristic subgroup. In other words, one such that for every
automorphism σ ∈ Aut(G) we have σ(H) = H.
(a) Show HCG.
(b) Show that there is a natural map Aut(G)→ Aut(G/H).
*(c) Classify the orbits of Aut(Z2) on Z2.
(d) Find all chracteristic subgroups of Z2.
OPT Do parts (c),(d) in Zn.

Lattices in Rn

3. (Construction) Let {v1, . . . ,vk} ⊂Rn be linearly independent, let Λ =
{

∑
k
j=1 a jv j | a ∈ Zk

}
⊂

Rn be the subgroup they generate, and let Rn/Λ be the quotient group, endowed with the
quotient topology coming from the map π : Rn→ Rn/Λ.
(a) Show that the map Zk→ Λ given by a→ ∑ j a jv j is an isomorphism.
(b) Show that Λ is a discrete subset of Rn.
(c) Given x,y ∈ Rn such that π(x) 6= π(y) find open sets Ux,Uy ⊂ Rn containing x,y respec-

tively such that π(Ux)∩π(Uy) = /0. You have shown that Rn/Λ is Hausdorff.
Hint: Let r = min{‖v‖ | v ∈ Λ, v 6= 0}.

(d) Show that Rn/Λ isn’t compact if k < n.
(e) Let k = n, and let F =

{
∑

k
j=1 a jv j | ∀ j :

∣∣a j
∣∣≤ 1

2

}
. Show that F surjects onto Rn/Λ and

conclude that Rn/Λ is compact.
HINT Applying an automorphism of Rn before starting the problem will make your life much

easier.
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4. (Reduction theory) Let Λ⊂ Rn be a discrete subgroup. Set Λ0 = {0}, V0 = {0} and for j ≥ 1
if Λ 6⊂Vj−1 choose v j ∈ Λ\Vj−1 minimizing the distance to Vj−1. Then set Λ j = Λ j−1 +Zv j,
Vj = Vj−1 +Rv j.
(a) Assume by induction that Λ j−1 = Λ∩Vj−1 and that it is a lattice in Vj−1. Show that set of

distances
{

d(v,Vj−1)
}

v∈Λ
has a minimal non-zero member, so that v j exists.

Hint: Consider first the set of distances d(v,Vj−1) for vectors v whose orthogonal projec-

tion to Vj−1 lies in F j−1 =
{

∑
j−1
i=1 aivi | |ai| ≤ 1

2

}
.

(b) Show that Λ j = Λ∩Vj.
(c) Conclude that Λ = Zv1⊕·· ·Zv j for some 0≤ j ≤ n.

DEFINITION. Call Λ < Rn a lattice if it is discrete and if Rn/Λ is compact.

Convergence Lemma

Write B(R) for the closed ball of radius R in Rn, cn for the volume of B(1) so that vol(B(R)) =
cnRn. Fix a lattice Λ < Rn.
5. Show that there exist V,C > 0 such that for any R≥ 1,

|#(Λ∩B(R))−V Rn| ≤CRn−1 .

Hint: Consider the set
⋃

v∈Λ∩B(R) (v+F), and prove the claim first for R≥ 2diam(F).

6. For s ∈ C the Epstein zetafunction is given by

E(Λ;s) =
′

∑
v∈Λ

‖v‖−ns ,

where the prime indicates summation over non-zero elements of Λ.
(a) Show that the series defining E(Λ;σ) converges for any real σ > 1.

Hint: You can use 5, or the identity
∫
Rn f (x)dx = ∑v∈Λ

∫
v+F f (x)dx.

(b) Show that the series defining E(Λ;s) converges uniformly absolutely in any right half-
plane of the form ℜ(s)≥ σ > 1.

(c) Conclude that the series defines a holomorphic function in the open half-plane ℜ(s) > 1.
(d) For n = 1 relate E(Λ;s) to the Riemann zetafunction.

REMARK. In the next problem set we will analytically continue E(Λ;s), showing that it extends
to a meromorphic function on C bounded in vertical strips with poles at 0,1 and satisfying a
functional equation relating the values at s and 1− s.

Later in the course we will also fix s and consider E(Λ;s) as a function of Λ.
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Extra: The “moduli space of complex annuli”

8. Given 0 < r < s let Let Ar,s = {z ∈ C | r < |z|< s}. Write Ar for Ar,1. Show that Ar,s and Ar′,s′

are biholomorphic when r′/s′ = r/s.

9. Let f : Ar→ Ar′ be a biholomorphism.
(a) Show that as z→ ∂Ar, f (z)→ ∂Ar′ .
(b) Show that for ε > 0 and all small enough δ (depending on ε), f (Ar+δ ,1−δ ) ⊃ Ar′+ε,1−ε .

Conclude that, up to inversion, we have | f (z)| −−−→
|z|→1

1 and | f (z)| −−−→
|z|→r

r′.

(c) Let g(z) = logr log | f (z)| − logr′ log |z|. Show that g is harmonic in Ar and vanishes at
∂Ar. Conclude that g(z) = 0.

(d) Show that f (z) = cz where |c|= 1, and hence that r = r′.
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1.1. Eisenstein series from doubly periodic functions

1.1.1. The Weierstrass℘-function. F(z) =
∫ z

0
dx√
1−x2 is a complicated function, but its inverse

F−1(z) = sinz is actually quite easy to work with. It is an entire function and it is periodic. Trying
to measure the arclength of an ellipse gives non-elementary integrals. Abel realized that these
difficult integrals have nice inverses – the inverse functions are doubly periodic functions.

DEFINITION 1. A lattice in Rn is a cocompact discrete subgroup.

PROPOSITION 2. (Problem set 1) Λ is lattice iff Λ =⊕n
i=1Zvi for a basis.

DEFINITION 3. A meromorphic function f : C→C is doubly periodic if there exist ω1,ω2 ∈C,
linearly independent over R, such that f (z) = f (z + ω1) = f (z + ω2). Equivalently, f is doubly
periodic if there exists a lattice Λ⊂ C such that f (z+ω) = f (z) for all ω ∈ Λ.

EXERCISE 4. Let ω1,ω2 ∈C be linearly dependent over Q. Show that there exists ω3 ∈Csuch
that Zω1 +Zω2 = Zω3.

Let ω1,ω2 ∈ C be linearly dependent over R but linearly independent over Q. Show that any
meromorphic function which is invariant under Zω1⊕Zω2 is constant.

Fix a lattice Λ = Zω1⊕Zω2⊂C. LetF be the fundamental domain {tω1 + sw2 | 0≤ t,s≤ 1}.

EXERCISE 5. (properties of fundamental domains)

By Liouville’s theorem any holomorphic doubly periodic function is constant.

LEMMA 6. Let f be non-constant, Λ-periodic and meromorphic. Then f has the same number
of zeroes and poles in F , which is at least two.

PROOF. 1
2πi
∮

∂F
f ′
f dz = 0 by periodicity so the same number of zeroes and poles. But 1

2πi
∮

∂F f (z)dz =
0 also, so can’t have a unique simple pole. �

DEFINITION 7. the Weierstrass ℘-function is

℘(z) =
1
z2 +

′

∑
ω

(
1

(z−ω)2 −
1

ω2

)
.

PROPOSITION 8. The sum converges locally uniformly absolutely on C\Λ, and hence defines a
holomorphic function there. This function is Λ-periodic and has double poles at the lattice points.

PROOF. 1
(z−ω)2 − 1

ω2 = O( 1
|ω|3

) locally uniformly in z ∈C\Λ gives the convergence. This also
shows that ℘ has a double pole at z = 0. We can then differentiate term-by-term to see

℘
′(z) =−2 ∑

ω∈Λ

1

(z−ω)3

which is evidently Λ-periodic. For ω ∈ Λ the derivative of ℘(z+ω)−℘(z) then vanishes, so this
function is constant. Since ℘(1

2ω) =℘(−1
2ω) (the function is even) the constant is zero. �

THEOREM 9. The field of meromorphic Λ-periodic functions is precisely C(℘,℘′).
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PROOF. Let f be meromorphic and Λ-periodic. We address first the case of f with poles only at
lattice points, by induction on the order r of the pole at 0. If r = 0 f is constant. Otherwise we have
r ≥ 2; say f (z) = A

zr +O(z−r−1) near 0. Either r or r−3 is even; in either case there are a,b ∈ Z≥0

and B such that B℘(z)a℘′(z)b = A
zr + O(z−r−1) as well, at which point f (z)−B℘(z)a℘′(z)b is

Λ-periodic, meromorphic, has only poles at lattice points with order < r.
In general, let

{
ζ j
}r

j=0 be a set of representatives for the distinct poles of f in C/Λ with degrees
d j, where ζ0 = 0. Consider the function

g(z) = f (z)
r

∏
j=1

(
℘(z)−℘(ζ j)

)d j .

It is Λ-periodic, meromorphic, and is regular at each ζ j, hence an element of C(℘.℘′) and we are
done. �

DEFINITION 10. For k > 2 the Eisenstein series is the functions

Gk(Λ) =
′

∑
ω∈Λ

1
ωk .

the convergence is verified in Problem Set 1.

Note that Gk(Λ) = 0 for odd k.

PROPOSITION 11. Near 0 we have

℘(z) =
1
z2 +

∞

∑
k=2
even

(k +1)Gk(Λ)zk

PROOF. If |z|< |ω| we have

1
ω− z

= ω
−1 1

1− z
ω

= ω
−1

∞

∑
k=0

( z
ω

)k
.

Differentiating we find
1

(z−ω)2 =
∞

∑
k=0

(k +1)ω−k−2zk .

Summing over ω ∈ Λ we find
′

∑
ω∈Λ

(
1

(z−ω)2 −
1

ω2

)
=

∞

∑
k=1

(k +1)Gk+2(Λ)zk .

�

LEMMA 12. Let Λ = Zω1⊕Zω2.
(1) ℘(z) takes every complex value twice on F . More precisely, if ℘(z) = ℘(w) then w ≡
±z(Λ).

(2) The zeroes of ℘′(z) on F are at 1
2Λ \Λ. Representatives in the fundamental domain are

z1 = ω1/2, z2 = ω2/2 and z3 = (ω1 +ω2)/2.
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PROOF. 1
2πi
∮

∂F
f ′(z)

f (z)−ζ
dz = 0 by periodicity, so f takes every value twice counting multiplicity.

This completes part (1)
Since ℘′(z) is periodic and has a triple pole at z = 0 it has exactly three zeroes in F (counting

multiplicity). Since zi− (−zi) = 2zi ∈ Λ we have ℘′(zi) = ℘′(zi) by periodicity and ℘′(zi) =
−℘′(zi) since the function is odd. �

THEOREM 13. (C/Λ as an elliptic curve)

(1) Let g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ). Then

(℘′(z))2 = 4(℘(z))3−g2(Λ)℘(z)−g3(Λ) .

(2) The map C→ Ĉ× Ĉ mapping z 7→ (℘(z),℘′(z)) induces a bijection between C/Λ and
the set of (projective) solutions to

y2 = 4x3−g2x−g3 .

(3) The polynomial 4x3−g2x−g3 has three distinct roots ei =℘i(zi).

PROOF. Using the explicit Laurent expansion of Proposition 11 on sees that

4(℘(z))3−g2(Λ)℘(z)−g3(Λ)− (℘′(z))2 = O(z2)

near z = 0. The function on the left is Λ-periodic and cannot have poles except at lattice points.
Since the singularity at z = 0 is removable this is an entire function, hence constant. The asymp-
totics as z→ 0 show that the constant is zero. This shows that the map of (2) is well-defined. That
it is bijective is Lemma 12, which also shows that the ei are distinct. �

In other words, the transcendental map z 7→ (℘(z),℘′(z)) gives C/Λ the structure of a complex
algebraic variety, specifically a projective curve. It turns out there can be very few maps between
elliptic curves.

COROLLARY 14. The map ∆(Λ) = g3
2− 27g2

3 is nowhere vanishing on the space of lattices.

The map j(Λ) = 1728g3
2

∆
is thus well-defined.

THEOREM 15. Let Λ,Λ′ be lattices in C and let f : C/Λ→ C/Λ′ be holomorphic. Then there
exist a,b ∈ C with aΛ⊂ Λ′ such that f (z+Λ) = az+b+Λ′.

PROOF. Let π : C→ C/Λ be the quotient map. Then f ◦ π : C→ C/Λ′ is continuous. Let
b ∈ C be such that f (0+Λ) = b+Λ′. Since C is simply connected and π ′ is a universal covering
map there exists a unique f̃ : C→ C such that f ◦π = π ′ ◦ f̃ and f̃ (0) = b. Differentiating in the
obviuos co-ordinates one sees that

∥∥ f̃ ′
∥∥

∞
≤ ‖ f ′‖

∞
< ∞ so f̃ is a holomorphic function of at most

linear growth. It follows that there exists a ∈C such that f̃ (z) = az+b. That aΛ⊂ Λ′ is clear. �

COROLLARY 16. The elliptic curves C/Λ and C/Λ′ are isomorphic iff Λ = aΛ′ for some
a ∈ C×. In that case j(Λ) = j(Λ′). We will later see that the j-invariant classifies elliptic curves.

1.1.2. Modulfar forms on the space of elliptic curves. We now consider the situation as Λ

varies. Let L̃2 denote the space of lattices in C.

DEFINITION 17. (Provisional) Say that f : L̃2→ C has weight k if f (rΛ) = r−k f (Λ).
13



Let Y (1) = L̃2/C× be the space of lattices up to scaling, that is the space of isomorphism
classes of elliptic curves. To understand Y (1) we consider its universal cover, the space H of
unordered bases up to scaling. Rotating and scaling every element of H has unique representative
of the form {1,τ} with ℑ(τ) > 0, associated to the lattice Λτ = Z⊕Zτ .

We would now like to understand the isomorphism relation in this parametrization.

LEMMA 18. C/Λτ ' C/Λτ ′ iff τ ′ = aτ+b
cτ+d for some

(
a b
c d

)
∈ SL2(Z).

PROOF. Say rΛτ ′ = Λτ . Then there exist a,b,c,d ∈ Z such that rτ ′ = aτ + b and r = cτ + d.
It follows that τ ′ = aτ+b

cτ+d . A short calculation shows that τ

r = a′τ ′+ b′ and 1
r = c′τ ′+ d′ where

a′,b′,c′,d′ are the entries of the inverse matrix. By uniqueness of representation it follows that

a′,b′,c′,d′ ∈ Z so
(

a b
c d

)
∈ GL2(Z). Now

ℑ

(
aτ +b
cτ +d

)
= ℑ

(
(aτ +b)(cτ̄ +d)
|cτ +d|2

)
=

ad−bc

|cτ +d|2
ℑ(τ)

so if ℑ(τ),ℑ(τ ′) > 0 we have ad−bc > 0 so ad−bc = 1 and
(

a b
c d

)
∈ SL2(Z). The converse

is clear. �

LEMMA 19. The map (γ,τ) 7→ aτ+b
cτ+d is an action of SL2(Z) on HH.

COROLLARY 20. Y (1) = SL2(Z)\H.

The analysis has boiled down to:

PROPOSITION 21. Gk(τ)
def
= Gk(Λτ) is a holomorphic function on H satisfying

Gk(γτ) = (cz+d)kGk(τ) .

DEFINITION 22. An automorphic form or weak modular form of weight k on Y (1) is a function
satisfying these two properties. The space of these will be denotedAk(SL2(Z)). WriteA(SL2(Z))
for the direct sum, a graded algebra.

REMARK 23. Note that Gk is not a function on Y (1), since it is not SL2(Z)-invariant. It is a
section of a complex line bundle on that sufrace, however.

We now show that Gk is also a generating function. For motivation note that Λτ+1 = Λτ so
Gk(τ + 1) = Gk(τ), so the restriction of Gk to any line of the form R + iy is a periodic function.
The co-ordinate q = e(τ) is a biholmorphism between the cylinder Γ∞\H and the punctured disc
D\{0}. Since Gk(q) is holomorphic in the disc, we have a Laurent expansion

Gk(τ) = ∑
m∈Z

amqm .

DEFINITION 24. Call am the Fourier coefficients of Gk.

REMARK 25. To obtain this expansion in an analytic way restrict the function to a line R+ iy.
It is a smooth periodic function, and hence

Gk(τ) = ∑
m∈Z

am(y)e(mx)

14



for some function am(y). Then, integrating the Cauchy-Riemann equation against e(−mx) on
[0,1]+ iy shows that am(y) = ame(miy).

DEFINITION 26. Let f be a weak modular form of weight k for SL2(Z) with Fourier expansion
f = ∑m amqm. We say that f is a:

(1) Meromorphic form if a f (m) = 0 for m < M0 (the space of these is denoted Ak(SL2(Z));
(2) Holomorphic form if a f (m) = 0 for m < 0 (the space of these is denotedMk(SL2(Z));
(3) Cusp form if a f (m) = 0 for m < 1 (in this case say that f is normalized if a1 = 1) (the

space of these is denoted Sk(Γ)

REMARK 27. S(Γ) =⊕kSk(Γ) is an ideal inM(Γ) =⊕kMk(Γ).

For k ∈R write σk(n) = ∑d|n dk for the divisor function. We now show that Ek is the generating
function for σk−1(n).

PROPOSITION 28. For k ≥ 4 we have

Gk(τ) = 2ζ (k)+2
(2πi)k

(k−1)!

∞

∑
n=1

σk−1(n)qn .

PROOF. Since Λτ = {cτ +d | c,d ∈ Z} and since k is even we have

Gk(τ) = ∑
d∈Z

1
dk +2 ∑

c>0
∑

d∈Z

1
(cτ +d)k .

In problem set 2 it wil be established that ∑d∈Z
1

(τ+d)k = (−2πi)k

(k−1)! ∑
∞
m=1 mk−1e(mτ). Since all sums

are absolutely convergent it follows that

Gk(τ) = 2ζ (k)+2
(2πi)k

(k−1)! ∑
c>0

∞

∑
m=1

mk−1e(mcτ) ,

�

COROLLARY 29. The Fourier expansion of ∆(Λτ )
(2π)12 begins q+ · · · with integral coefficients. The

Fourier expansion of j : H→ C begins 1
q +744+ · · · (all integers).

REMARK 30. We will later see j : Y (1)→ C is bijective; “filling in the cup” gives a bijection
X(1)→ Ĉ = P1(C), realizing the Riemann surface X(1) as a complex algebraic variety. In fact,
C( j) is the function field of X(1) since

∏a ( j(τ)− j(τa))
∏b ( j(τ)− j(τb))

can match the finite divisor of any g (hence the divisor since the total degree is zero), and any
function without poles on X(1) is constant.

DEFINITION 31. The normalized Eisenstein series is

Ek(τ) =
1

2ζ (k)
Gk(τ)

= 1− 2k
Bk

∞

∑
n=1

σk−1(n)qn

15



where Bk is the kth Bernoulli number. In problem set 2 it will be verified that Bk ∈Q so that Ek(τ)
has rational coefficients with a common denominator.

EXAMPLE 32. Consider the two elements E8(τ),(E4(τ))2 ∈M8(Y (1)). A calculation in com-
plex algebraic geometry shows dimCM8(Y (1)) = 1. Comparing the constant coefficients both
functions are equal. It follows that

σ7(n) = σ3(n)+120
n−1

∑
j=1

σ3( j)σ3(n− j) .

REMARK 33. The same calculation shows that (note the order of summation!)

G2(τ) def= ∑
d∈Z

1
d2 +2 ∑

c>0
∑

d∈Z

1
(cτ +d)2

= 2ζ (2)−8π
2

∞

∑
n=1

σ(n)qn .

It follows that

τ
−2G(−1/τ) = ∑

c∈Z
∑

d∈Zc

1
(dτ− c)2

= 2ζ (2)+ ∑
d∈Z

∑
c6=0

1
(cτ +d)2 .

Also,

G2(τ) = G2(τ)−∑
c6=0

∑
d∈Z

1
(cτ +d)(cτ +d +1)

= 2ζ (2)+ ∑
c6=0

∑
d∈Z

1
(cτ +d)2(cτ +d +1)

= 2ζ (2)+ ∑
d∈Z

∑
c6=0

1
(cτ +d)2(cτ +d +1)

16



which converges absolutely. Subtracting we find

G2(τ)− τ
−2G2(−1/τ) = −∑

d∈Z
∑
c6=0

1
(cτ +d)(cτ +d +1)

= − lim
N→∞

N−1

∑
d=−N

∑
c6=0

(
1

cτ +d
− 1

cτ +d +1

)
= − lim

N→∞
∑
c6=0

(
1

cτ−N
− 1

cτ +N

)
= −2

τ
lim

N→∞

∞

∑
c=1

(
1

−N/τ + c
+

1
−N/τ− c

)

= −2
τ

lim
N→∞

(
τ

N
−πi−2πi

∞

∑
m=1

e(−2πimN/τ)

)

=
2πi
τ

.

It follows that

(cτ +d)−2G2(γτ) = G2(τ)− 2πic
cτ +d

for all γ ∈ SL2(Z).

1.2. The modular discriminant and partitions

DEFINITION 34. The Dedekind etafunction is (roughly, the inverse of the partition function)

η(τ) = q
1

24

∞

∏
n=1

(1−qn)

PROPOSITION 35. η(−1/τ) =
√
−iτη(τ).

PROOF. Let E2(τ) = 1
2ζ (2)G2(τ) = 1−24∑

∞
n=1 σ(n)qn. Since log(η(τ)) = πi

12τ +∑
∞
n=1 log(1−

qn) converges localy uniformly absolutely it can be differentiated termwise, giving

(log(η(τ))′ =
πi
12
−2πi

∞

∑
n=1

nqn

1−qn

=
πi
12
−2πi

∞

∑
n=1

∞

∑
m=1

nqnm

=
πi
12
−2πi

∞

∑
d=1

σ(d)qd

=
πi
12

E2(τ) .

Thus
d

dτ
log(η(−1

τ
)) =

1
τ2

πi
12

E2(−
1
τ
)
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and
d

dτ
log
(√
−iτη(τ)

)
=

1
2τ

+
πi
12

E2(τ) =
πi
12

(
E2(τ)+

12
2πiτ

)
.

It follows that η(−1/τ) = C
√
−iτη(τ) for some C. Set τ =−i to see C = 1. �

DEFINITION 36. The Ramanujan ∆-function and τ-function are given by:

∆(τ) def= q
∞

∏
n=1

(1−qn)24

def=
∞

∑
n=1

τ(n)qn .

COROLLARY 37. ∆(τ) ∈ S12(Y (1)).

CONJECTURE 38. (Ramanujan)
(1) τ(n)τ(m) = ∑d| τ()

(2) |τ(p)| ≤ 2p
11
2 .

FACT 39. dimC S12(1) = 1.

COROLLARY 40. ∆(Λτ) = (2π)12
∆(τ) (examine a0).

THEOREM 41. (Mordell 1923) Conjecture (1) holds.

PROOF. For f ∈ Sk(1) let Tn f = ∑ad=n ∑b(d) d−k f
(az+b

d

)
(“nth Hecke operator”). Then Tn f are

linear operators on Sk(1) and it is easy to check that TnTm = ∑d T . If Tn∆ = λ (n)∆ then λ f (n)λ f (m)
satisfy Ramanujan’s relation. It is also easy to check that if f ∈ Sk(1) has the Fourier expansion
∑

∞
n=1 a f (n)qn and Tn f = λ f (n) f then a f (n) = λ f (n)a f (1). In particular it follows that τ(n) = λ (n)

and we are done. �

THEOREM 42. (Deligne 1974) Conjecture (2) holds.

This is deep. The main ingredient are the Weil conjectures.

CONJECTURE 43. (Lehmer) τ(p) 6= 0 for all p.

1.3. Theta functions from sums of squares

Let rk(n) = #
{

v ∈ Zk | ∑k
i=1 v2

i = n
}

. Let θk(q) = ∑
∞
n=0 rk(n)qn. Note that θk(q) = (θ(q))k for

θ = θ1.
Consider θ as a fuction of τ . Clearly θ(τ +1) = θ(τ). Also,

θ(τ) =

√
1
−2iτ

θ(−1/4τ)

by Poisson summation. Since
(

1
4 1

)
=
(

1/4
−1

)(
1 −1

1

)(
−1

4

)
one can apply

the tranformation rules to find out:

θ

(
τ

4τ +1

)
=
√

4τ +1θ(τ) ,

That is θ ∈M 1
2
(Γ) where Γθ < SL2(Z) is the subgroup generated by

{
±
(

1
4 1

)
,±
(

1 1
1

)}
.
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COROLLARY 44. θ 4 ∈M2(Γθ ).

Now verify G2,N = G2(τ)−NG2(Nτ) ∈M2(Γθ ) for N = 2,4.

FACT 45. dimCM2(Γθ ) = 2.

COROLLARY 46. θ 4 = aG2,2 +bG2,4 for some A,B.

Examining the first two Fourier coefficents (θ 4 = 1+8q+ · · · ) shows:

θ
4(τ) =− 1

π2 G2,4(τ) = 1+8
∞

∑
n=1

∑
d|n
4-d

d

qn .

THEOREM 47. (Jacobi) For n≥ 1 we have r4(n) = ∑d|n
4-d

d.

In general we have θ 4k ∈M2k(Γθ ).

FACT 48. M2k(Γθ ) is generated by 2 Eisenstein series and some cusp forms.

COROLLARY 49. Bounds on Fourier coefficients of cusp forms give asymptotics for r4k(n).
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Math 613: Problem set 2 (due 22/9/09)

Let V be an n-dimensional inner product space, and fix a lattice Λ < Rn with basis
{

v j
}n

j=1.
Write T = V/Λ for the quotient torus, a compact space.

Integration on T

DEFINITION. A fundamental domain for Λ is a closed subset F ⊂V such that:
(1) ∪v∈Λ(v+F) = V , that is F intersects every orbit and surjects on T.
(2) There is an open set F◦ which injects into T and such that F = F◦.
(3) The difference set F \F◦ has measure zero.

1. Show that F 1
2

=
{

∑
n
j=1 a jv j |

∣∣a j
∣∣≤ 1

2

}
and F1 =

{
∑

n
j=1 a jv j | 0≤ a j ≤ 1

}
are fundamental

domains.

*2. (The Dirichlet domain) Fix x0 ∈V and set

FD = {x ∈V | ∀v ∈ Λ : ‖x− x0‖ ≤ ‖x− (x0 + v)‖} .

(a) Show that FD is closed and surjects on T.
Hint: Write it as an intersection of closed half-spaces.

(b) Show that FD is bounded.
Hint: Show that FD ⊂ B(x0,2diam(F1)).

(c) Show that FD is the intersection of finitely many closed half-spaces.
(d) Let F◦D be the intersection of the interiors of these half-spaces and show that FD is a

fundamental domain.

3. (Lattice averaging) A function f ∈ C(V ) is said to be of rapid decay if for all N ≥ 1 the
function (1+‖x‖)N f (x) is bounded. f ∈C∞(V ) is said to be of Schwartz class if it and all its
derivatives are of rapid decay (the set of such functions is denoted S(V )).
(a) Let f be of rapid decay. Show that for all x ∈ V , (ΠΛ f )(x) def= ∑v∈Λ f (x + v) converges

and defines a continuous function on T.
OPT Let f ∈ S(V ). Show that ΠΛ f is smooth.
(b) (Smooth fundamental domain) Let χ0 ∈C∞

c (V ) be non-negative and satisfy χ0 �F≡ 1 for
some compact fundamental domain F . Show that χ(x) = χ0(x)

(ΠΛχ0)(x)
∈C∞

c (V ) and that we
have ΠΛχ ≡ 1.

*4. (Integration on T) dx will denote the Lebesgue measure on V . For f ∈C(T) define
∫
T f (x̄)dx̄ =∫

V f (x)χ(x)dx.
(a) Show that the integral on the RHS defines a linear map C(T)→ C mapping non-negative

functions to non-negative reals.
(b) Show that for any fundamental domain F ′ for Λ we have∫

F ′
f (x)dx =

∫
V

f χ .

(c) Conclude that the measure dx̄ on T is translation-invariant.
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(d) Show that the volume of T is the absolute value of the determinant of the matrix A such
that ai j is the ith co-ordinate of v j in an orthonormal basis of V . Conclude that (vol(T))2

is the determinant of the Gram matrix, whose i jth entry is
〈
vi,v j

〉
.

Hint: Use one of the fundamental domains of problem 1.

5. Let V be an n-dimensional real vector space, V ∗ the dual space. Let Λ < V be a lattice, and set
Λ∗ = {v∗ ∈V ∗ | v∗(Λ)⊂ Z}.
(a) Show that Λ∗ is a lattice in V ∗.

Hint: Use the dual basis.
(b) Show that the standard isomorphism V 'V ∗∗ identifies Λ with Λ∗∗.
(*c) If V is an inner product space show that vol(V/Λ)vol(V ∗/Λ∗) = 1.

The Poisson Summation Formula

We will use the standard notation e(z) = exp(2πiz). For a short note on Fourier series and the
Poisson Summation Formula see the course website.

6. Fix k ≥ 2.
(a) Show that τ 7→ ∑d∈Z

1
(τ+d)k is holomorphic in H = {x+ iy | y > 0}.

(b) Show that ∫
R

e(−rx)
(x+ τ)k dx =

{
(−2πi)k

(k−1)! rk−1e(rτ) r ≥ 0

0 r ≤ 0

(c) Show that ∑d∈Z
1

(τ+d)k = (−2πi)k

(k−1)! ∑
∞
m=1 mk−1e(mτ).

(d) Show that there exists C such that
1
τ

+ ∑
d≥1

(
1

τ +d
+

1
τ−d

)
= C +(−2πi)

∞

∑
m=0

e(mτ) = C− 2πi
1− e(τ)

.

Hint: After showing that both sides are differentiable, take their derivatives.
(e) Multiply by τ and use the Taylor expansion of both sides to show that C = πi and that

1−2
∞

∑
k=1

ζ (2k)τ2k = πiτ
e(τ)+1
e(τ)−1

.

(f) Show that for k ≥ 1 even, ζ (k) =−1
2

(2πi)k

k! Bk where Bk are rational numbers.
Hint: let t

2
et+1
et−1 = ∑

∞
k=0

Bk
k! tk.

7. let ϕ(x) = exp
{
−πα ‖x‖2

}
on Rn where ℜ(α) > 0.

(a) Show that ϕ̂(k) = α−n/2 exp
{
− π

α
‖k‖2

}
(take the branch of the square root defined on

ℜ(α) > 0 such that
√

1 = 1).
(b) Conclude that θ(τ) = ∑n∈Z e2πin2τ satisfies θ(− 1

4τ
) =
√
−2iτθ(τ)
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Continuing the Epstein Zetafunction

8. For ϕ ∈C∞(V ) of Schwartz class set ϕ(Λ) = ∑
′
v∈Λ

ϕ(v) and Z(Λ;ϕ;s) =
∫

∞

0 ϕ(rΛ)rns dr
r .

(a) Show that the sum converges absolutely.
(b) Show that as r → ∞, |ϕ|(rΛ) decays faster than any polynomial and that as r → 0,
|ϕ|(rΛ) = O(r−n). Conclude that Z(Λ;ϕ;s) converges absolutely in ℜ(s) > 1 and de-
fines a holomorphic function there.

(c) Applying the Poisson summation formula, show that for ℜ(s) > 1,

Z(Λ;ϕ;s) =
∫

∞

1
ϕ(rΛ)rns dr

r
−ϕ(0)

1
ns

+
1

vol(Λ)

∫
∞

1
ϕ̂(rΛ

∗)rn(1−s) dr
r
− ϕ̂(0)

vol(Λ)
1

n(1− s)
.

(d) Since ϕ ∈ S(V ) we also have ϕ̂ ∈ S(V ) and ˆ̂ϕ(x) = ϕ(−x). Conclude that Z(Λ;ϕ;s)
extends to a meromorphic function of s with poles at s = 0,1 which satisfies the functional
equation √

vol(Λ)Z(Λ;ϕ;s) =
√

vol(Λ∗)Z(Λ∗; ϕ̂;1− s).
(e) Assume that ϕ is spherical, and show that for ℜ(s) > 1 we have

Z(Λ;ϕ;s) =
(∫

∞

0
ϕ(r)rns dr

r

)
E(Λ;s) .

(f) For ϕ ∈C∞
c (R×>0), show that

(∫
∞

0 ϕ(r)rns dr
r

)
extends to an entire function; conclude that

E(Λ;s) extends to a meromorphic function of s.
(g) For ϕ(x) = exp

{
−π ‖x‖2

}
show that ϕ(x) = ϕ̂(x) and that∫

∞

0
ϕ(r)rns dr

r
= 2π

−ns/2
Γ(

ns
2

) .

Conclude that E(Λ;s) has no poles other than s = 0,1 and satisfies the functional equation√
vol(Λ)π−

n
2( 1

2 +s)Γ(
ns
2

)E(Λ;s) =
√

vol(Λ∗)π−
n
2( 1

2−s)Γ(
n(1− s)

2
)E(Λ∗;1− s) .

(h) Show from (c) that Ress=1 E(Λ;s) = πn/2

2vol(Λ)Γ( n
2)

.

REMARK 50. We often write vol(Λ) for the covolume vol(V/Λ).
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CHAPTER 2

Fuchsian groups

2.1. The hyperbolic plane

H – upper half-plane model; metric, measure.
Isometries; NA acts simply transitively so G = Isom(H) = NAK, Isom+(H) = Isom◦(H) =

NAK◦. P = NAM.
Classification of isometries ⇐⇒ conjugacy classes in isometry group.
More geometry: Geodesics, boundary, classification revisited (fixed points). Gauss-Bonnet.
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Math 613: Problem set 3 (due 4/10/09)

For a group G acting on a space X write G\X for the space of orbits. If X is a topological space,
G a topological group and the action G×X → X is continuous we endow G\X with the quotient
topology.

The moduli space of elliptic curves

1. Let T =
(

1 1
1

)
, S =

(
−1

1

)
and let Γ < SL2(Z) be the subgroup they generate, Γ∞ the

subgroup generated by ±T (note that −I acts trivially on the upper half-plane). Let S denote
the strip

{
|ℜ(τ)| ≤ 1

2

}
and let F =

{
τ ∈H | |τ| ≥ 1, |ℜ(τ)| ≤ 1

2

}
.

(a) Show that S is a fundamental domain for Γ∞\H, hence surjects on Γ\H.
(b) Let τ = x + iy ∈ S. Show that there are only finitely many y′ ≥ y such that there exists x′

for which τ ′ = x′+ iy′ ∈ SL2(Z) · τ .
Hint: Recall that y(γτ) = y(τ)

|cτ+d|2
, and consider the real and imaginary parts of cτ + d

separately.
(c) Let f : S → S be as follows: if |τ| ≥ 1 set f (τ) = τ . Otherwise, let f (τ) = T mSτ with m

chosen so that f (τ) ∈ S . Show that ℑ( f (τ)) > ℑ(τ).
(d) Conclude that F surjects on Γ\H.
(e) Let τ ∈F and γ ∈ SL2(Z) be such that γτ ∈F but γ 6=±I. Show that one of the following

holds:
(1) |ℜ(τ)|= 1

2 and γ ∈
{
±T,±T−1}.

(2) |τ|= 1 and γ ∈ {±S}.
(3) τ =−1

2 +
√

3
2 i

(f) Show that −I ∈ Γ and conclude that Γ = SL2(Z) and that F is a fundamental domain for
Y (1) = SL2(Z)\H.

OPT Let E = C/Λ be an elliptic curve.
(a) Show that up to isomorphism of elliptic curves we may assume that 1 ∈ Λ and that it is a

non-zero element of minimal length.
(b) Let τ ∈ H∩Λ be of minimal norm. Show that |τ| ≥ 1 and that |ℜ(τ)| ≤ 1

2 , that is that
τ ∈ F .

(c) Show for any z∈C there is z′ ∈ z+Λτ with |z′|< 1
2 + 1

2 |τ| ≤ |τ| and conclude that Λ = Λτ ,
that is that F surjects on Y (1).

– Using 1(e) it follows again that F is a fundamental domain.

3. Let dA(τ) = dxdy
y2 denote the hyperbolic area measure on H. Calculate

∫
F dA(τ).
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The moduli space of elliptic curves with level structure

4. Let Λ < C be a lattice, E = C/Λ the associated elliptic curve. For an integer N write E[N] for
the N-torsion points, that is the points x ∈ E such that N · x = 0.
(a) Show that E[N]' (Z/NZ)2 as abelian groups.
– We now study the action of G = SL2(Z/NZ) on E[N].
(b) Show that G acts transitively on the set of points in E[N] whose order is N exactly. Find

the stabilizer of
(

1
0

)
(call it K1(N)) and the number of such points.

(c) Conclude that G acts transitively on the set of subgroups of E[N] which is cyclic of order

N. Find the stabilizer of the subgroup
{(
∗
0

)}
(call it K0(N)) and the number of such

subgroups.
(d) Find the order of SL2(Z/NZ). Write in the form N3

∏p|N f (p).

5. Let Y0(N) denote the set of isomorphism classes of pairs (E,C) where E is a complex elliptic
curve and C ⊂ E is a subgroup isomorphic to CN ((E,C) ∼ (E,C′) if there exists an isomor-
phism f : E→ E ′ such that f (C) = C′).
(a) Show that the map H→ Y1(N) mapping τ to the class of the pair

(
C/Λτ ,

1
N Z/Z

)
(i.e. the

subgroup of C/Λτ generated by 1
N +Λτ ) is surjective.

(b) By analyzing the isomorphism relation show that Y0(N) = Γ0(N)\H where Γ0(N) is the
inverse image in SL2(Z) of K0(N).

OPT Let Y1(N) denote the set of isomorphism classes of pairs (E,P) where E is a complex elliptic
curve and P ∈ E[N] has order N exactly.
(a) Show that the map H → Y1(N) mapping τ to the class of the pair

(
C/Λτ ,

1
N +Λτ

)
is

surjective.
(b) By analyzing the isomorphism relation show that Y1(N) = Γ1(N)\H where Γ1(N) is the

inverse image in SL2(Z) of K0(N).

OPT Let Y (N) denote the set of isomorphism classes of triples (E,P,Q) where E is a complex
elliptic curve and P,Q ∈ E[N] are an ordered basis for E[N] as a free Z/NZ-module.
(a) Show that the map H→Y (N) mapping τ to the class of the triple

(
C/Λτ ,

1
N Z+Λτ ,

τ

N +Λτ

)
is surjective.

(b) By analyzing the isomorphism relation show that Y (N) = Γ(N)\H where Γ(N) is the
kernel of the map SL2(Z)→ SL2(Z/NZ).
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Hyperbolic Convergence Lemma

Let Γ < SL2(R) be discrete and assume that Γ∞ = Γ∩P is non-trivial (i.e. infinite), with the

image in PSL2(R) generated by
(

1 h
1

)
.

8. (Counting Lemma)
(a) Show that a fundamental domain for Γ∞\H is the strip

{
|ℜ(z)| ≤ h

2

}
.

(b) Calculate the hyperbolic area of the half-strip
{

x+ iy | |x| ≤ h
2 , y≥ 1

Y

}
.

(c) For z ∈H show that there exists C > 0 (depending locally uniformly on z) such that for all
Y > 0, #RY ≤C(1+Y ) where

RY =
{

Γ∞γ ∈ Γ∞\Γ | y(γz)≥ 1
Y

}
.

Hint: Let B be a hyperbolic ball around z of small enough radius so that if γ ∈ Γ satisfies
γB∩B 6= /0 then γ belongs to the finite group Γz, and consider the set of images of Γ ·B in
the strip.

For ℜ(s) > 1 we define the non-holomorphic Eisenstein series to be

E(z;s) = ∑
γ∈Γ∞\Γ

y(γz)−s

9. (Convergence Lemma)
(a) Show that the series E(z;σ) converges absolutely if σ > 1.

Hint: Show that E(σ ;z)≤ A+∑
∞
n=1 (#Rn+1−#Rn)n−σ where A is easily controlled. Now

use summation by parts.
(b) Conclude that E(z;s) extends to a holomorphic function of s in ℜ(s) > 1.
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2.2. Discrete subgroups and fundamental domains

DEFINITION 51. G acts properly discontinuously if for all z ∈ H, K cpt, {γ ∈ Γ | γz ∈ K} is
finite.

LEMMA 52. G acts properly discontinuously iff for all z there is an open nbd V such that
#{γ | γV ∩V 6= /0}< ∞ iff for all A,B cpt #{γ | γA∩B 6= /0}< ∞.

PROOF. If γB(z,ε)∩B(z,ε) 6= /0 then d(z,γz)≤ 2ε . Now cover A with finitely many Vz. �

COROLLARY 53. For all z there is a nbd W such that γW ∩W 6= /0⇒ γz = z.

PROOF. Take V as in Lemma. Now if d(γz,z) = ε then γB(z,ε/2)∩B(z,ε/2) = /0. �

THEOREM 54. Γ⊂ G acts properly discontinuously iff Γ < G is discrete.

PROOF. If γn→ id then γnz→ z and then by the Corollary γn ∈ Γz for n large, and Γz is finite so
γn is eventually constant. If Γ < G is discrete and γnz ∈ K then can have γnz→ w. Wlog z = i and
writing γn = pnkn we have pn→ p such that pi = w and we can assume kn→ k since K is compact.
It follows that γn→ pk which contradicts discreteness unless sequence is eventually constant. �

THEOREM 55. z ∈ H with Γz trivial. Then FD is a fundamental domain. It is convex, and its
boundary is a union of geodesic segments.

PROOF. Fz is the intersection of countably many closed half-planes hence closed and convex.
Fz ∩B(z,R) is determined by finitely many half-planes, so ∂Fz is a countable union of geodesic
segments, hence of zero area, and Fz is the closure of its interior (take radial geodesics to analyze
the boundary). If Tw,w ∈ FD for T 6= Id then d(w,z) = d(w,T−1z) so w is on the boundary of
FD. �

LEMMA 56. Every Γ-orbit intersects FD finitely many times.

PROOF. Let w ∈ FD. If γw ∈ FD then d(γw,z) = d(w,z) and can have at most finitely many
such. �

COROLLARY 57. FD is locally finite: on finitely many translates intersect a compact set K.
Hence:

(1) Every elliptic orbit has a representative in ∂FD. If the period is k the angle is at most 2π

k .
(2) Γ is generated by elements that match sides. If FD is geom finite Γ is f.g.

PROOF. (1) Folllows from Lemma. (2) Consider the graph with vertices γFD and edges from
these elements. It is connected, since if two share a vertex then at the vertex there are finitely many
translates, all sharing sides. �

DEFINITION 58. A vertex of ∂FD is the intersection of two boundary geodesics, or the fixed
point of an involution in the middle of a geodesic.

LEMMA 59. The set of vertices is discrete

PROOF. Say w is a vertex on the side L(z,γz). Then d(z,γz)≤ 2d(z,w) so at most finitely many
γ . �

PROPOSITION 60. Let {vi} be a Γ-orbit of vertices, and let Γv1 have order m (perhaps m = 1).
Let ωi be the interior angles at vi. Then ∑i ωi = 2π

m .
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PROOF. Let γi be such that γiv1 = vi and let σ generate Γv1 then
{

γiσ
jFD
}

is the set of funda-
mental domains containing v1. The total angle they have at v1 is 2π = m∑i ωi. �

THEOREM 61. (Siegel) Let µ(FD) < ∞. Then FD is geometrically finite.

PROOF. Let a chain of finite vertices by wk, with [wk,wk+1] being a side. Form triangles with z
and let the angles be αk,βk,γk so ωk = γk−1 +βk. Then the area of kth triangle is π−(αk +βk +γk).
Adding for −N +1≤ k≤M find ∑

M
k=−N+1(π−ωk)+π−β−N− γM ≤∑

k=M
k=−N αk +∑

M
k=−N µ(∆k).

RHS is bounded above so sum on LHS converges. Also, infinitely often wk+1 is farther away than
wk so βk ≥ γk and γk ≤ π

2 . Similarly on the other side. Summing over all chains get

∑
v

(π−ωv)≤ 2π + µ(FD) .

Now separate the sum over orbits of vertices. An orbit of period m = 1 and length n has angles
ωvi < π and ∑ωvi = 2π so ∑(π−ωvi) = (n−2)π ≥ π . An orbit of period m≥ 3 has ∑(π−ωi) =
nπ − 2π

m =
(
n− 2

m

)
π ≥ π

3 . Any elliptic fixed point of order 2 is the middle of a segment with
endpoints of other types. It follows that there are finitely many vertices in H. For the ideal vertices
take the polygon with just those vertices. It has area πN where N is their number, so there are only
finitely many of those too. �

THEOREM 62. Let Fz be geometrically finite. Then Γ is finitely generated.

PROOF. Let S = {s ∈ Γ | sFD∩FD 6= /0}. �

2.3. Cusps

PROPOSITION 63. If FD is compact there are no parabolic elements.

PROOF. Let η(z) = inf{d(z,γz) | γ not elliptic}. This is γ-invariant and continuous, and posi-
tive pointwise. It is therefore uniformly bounded below. �

PROPOSITION 64. If FD is not compact it contains a vertex at infinity and Γ\H is not compact.

PROOF. Let r(θ) be the radius of FD in the direction θ . This is continuous if finite, so if FD
is non-compact FD touches the boundary and contains an embedded infinite geodesic ray, hence
isn’t compact. �

DEFINITION 65. Consider the action of a discrete subgroup Γ < SL2(R) on ∂H = P1(R). We
say that ξ ∈ P1(R) is a cusp Γ if Γξ = StabΓ(ξ ) is non-trivial (contains an element other than±I).
We say two cusps are equivalent if γξ = η for some γ ∈ Γ.

THEOREM 66. Let FD be non-compact but of finite volume. Then there are vertices at infinity,
they are parabolic fixed points, and cusps of Γ are equivalent to vertices at infinity.

PROOF. The endpoint of the geodesic ray in Proposition 64 cannot line on a side at infinity so
must be a vertex. Let ξ be any vertex at infinity. Consider {γ ∈ Γ | ξ ∈ ∂ (γFD)}, certainly infinite.
Then γ−1ξ is also a vertex, hence lies in a finite set. It follows that that Γξ is infinite. If γ ∈ Γξ is
not trivial then it must be parabolic: if z,γz are on the same horosphere γ is parabolic. Otherwise
can assume γz is inside the horoball. Then h(t) = [γz,ξ ]t is always inside g(t) = [z,ξ ]t so that
l = limt→∞ d(g(t),h(t)) > 0. Then d(g(t),h(t− l))→ 0 which means d(g(t),γz) ≈ d(g(t),z)− l,
which isn’t possible.
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Conversely, assume that ∞ is a cusp of width h. We show that a cuspidal neighbourhood embeds
in the quotient. Assume that ℑ(γz)≥ ℑ(z)≥ Y and both have real parts at most h

2 . From
y

|cz+d|2
≥ y

and hence |cz+d|2≤ 1, we get c≤ 1
Y . Now consider the sequence γ0 = γ , γn+1 = γn

(
1 h

1

)
γ−1

n .

If |ch| ≤ 1 this converges to the identity unless c = 0.
It now follows that if ξ ,η are inequivalent cusps then deep enough cuspidal neighbourhood

are disjoint. Now let ξ be a cusp inequivalent to the vertices. Then its cuspidal neighbourhood is
disjoint from those of the vertices. But FD minus thoses is compact. �

2.4. Construction of Γ\H

The orbifold structure is automatic, together with the Riemannian metric. For a Riemann
surface structure, identify H with the disc model so that a given z ∈ H maps to 0. Then Γz is
rotation by an angle, and take the co-ordinate zk where k is the period. Near a cusp take the
co-ordinate qh = e2πia/h.

DEFINITION 67. The periods of Γ\H are the orders of the elliptic points and the number of
cusps.

EXAMPLE 68. The function field of Y (1): a contour integral argument shows that j : X(1)→
P1(C) is bijective. Now let f ∈ C(X(1)) and let g = ∏k( j(z)− j(pk))

∏l( j(z)− j(ql))
have the same zeroes and poles

as f in Y (1). Then g
f has no zeroes or poles in Y (1). But since X(1) is compact, g

f has neither a
zero nor a pole at ∞ so g

f is constant.
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CHAPTER 3

Modular forms

Problems:

3.1. Holomorphic forms

The action of GL+
2 (R) on Hextends to an action on functions: set

( f |kγ)(z) = (detγ)k/2(cz+d)−k f (γz) .

PROBLEM 69. Verify that this is a right action.

Fix a lattice Γ < SL2(R).

DEFINITION 70. For an integer k set Ωk(Γ)= { f : H→ C | f meromorphic, ∀γ ∈ Γ : f |kγ = f}.
Call these automorphic forms.

PROBLEM 71. Let f ∈ Ωk(Γ), g ∈ Ωl(Γ). Show that f g ∈ Ωk+l(Γ) and that if f is non-zero,
f−1 ∈ Ω−k(Γ). Show that the sum in Ω(Γ) = ⊕kΩk(Γ) is direct, so that Ω is a graded field,
containing the field Ω0.

Now let ξ ∈ ∂H be a cusp of Γ, and let σ ∈ SL2(R) such that ξ = σ∞. Say that σ−1Γξ σ ·

{±1} =
{
±
(

1 h
1

)n}
. Let f ∈ Ωk(Γ) with k even. Then f |kσ is a meromorphic function in-

variant by
(

1 h
1

)
, and hence a meromorphic function on the punctured disc

〈(
1 h

1

)〉
\H,

that is f |kσ = g(qh) for some g meromorphic in D where qh = e(z/h).

DEFINITION 72. Say that f is meromorphic, holomorphic or vanishes at ξ if g is so at q = 0,
and set:

(1) Ak(Γ) = { f ∈Ωk(Γ) | f is meromorphic at the cusps}.
(2) Hk(Γ) = { f ∈ Ak(Γ) | f is holomorphic on Hand at the cusps}
(3) Sk(Γ) = { f ∈Hk(Γ) | f vanishes at the cusps}.

For f ∈ Ak(Γ) g will have a Laurent expansion near q = 0, so we have a Fourier expasion
( f |kσ)(z) = ∑n∈Z anqn

h where qh(z) = e(z/h).

PROBLEM 73. This expansion is independent of the choice of σ .

REMARK 74. For k odd one says f is meromorphic, holomorphic or cuspidal if f 2 is so. We
will not discuss modular forms of odd weight.

PROBLEM 75. ⊕kAk(Γ) is a graded field. A0(Γ) is the function field of the Riemann surface
Γ\H∗.

DEFINITION 76. f ∈Ωk(Γ) is a weak modular form if it is holomorphic in H.
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LEMMA 77. Let f ∈Ωk(Γ) be a weak modular form. Assume that f (z) = O(y(z)−ν) for some
ν ∈ R≥0. Then f ∈ HkG. If ν < k then f ∈ Sk(Γ).

PROOF. Let ξ be a cusp of Γ, ξ 6= ∞. Then σξ =
(

a b
c d

)
with c 6= 0. Then ℑ(σξ z) =

ℑ(z)
|cz+d|2

= ℑ(z)
c2ℑ(z)2+(cℜ(z)+d)2 � 1

ℑ(z) uniformly in ℜ(z) and 1
(cz+d)k � ℑ(z)−k. It follows that

an =
1
h

∫ iy0+h

iy0

e(−nz/h)
(

f |kσξ

)
(z)dz

� e2πny0/hyν−k
0 .

Now if n < 0 taking ℑ(z)→ ∞ shows an = 0 and if ν < k this will also work for n = 0. Since ∞ is
equivalent to a real cusp we are done. �

THEOREM 78. f ∈Ωk(Γ) is a cusp form iff f (z)yk/2 is bounded on H.

PROOF. Sufficiency is by the Lemma. For necessity note first that if g = f |kα then
∣∣∣g(z)yk/2

∣∣∣=(
y

|cz+d|2

)k/2
| f (αz)|= | f (αz)|y(αz)k/2 so the condition is invariant under conjugation. Now let i∞

be a cusp of Γ with expansion f (z) = ∑n≥1 anqn
h. Then from absolute convergence, | f (z)|= O(qh)

as ℑ(z)→ ∞ which decays exponentially and we are done. �

COROLLARY 79. (Hecke’s “Trivial” bound) let f ∈ Sk(Γ). Then at every cusp the Fourier
expansion satisfies an = O(nk/2).

PROOF. Wlog may assume the cusp is at infinity. We then have

an =
1
h

∫ iy0+h

iy0

f (z)e(−nz/h)dz

� e2πny0/hy−k/2
0 .

Now take y0 = 1
n . �

REMARK 80. Quantitative equidistribution of closed horocycles gives a better bound than
Cauchy-Schwartz and hence a saving in the exponent.

More generally, if χ : Γ→ S1 is of finite order then set Ωk(Γ,χ)= { f ∈Ωk(Ker χ) | ∀γ ∈ Γ : f |kγ = χ(γ) f}
and similarly for the subspaces. If f ,g ∈ Hk(Γ,χ) with at least one a cusp form then f g ∈
S2k(Γ,χ2) and | f g|yk is bounded and Γ-invariant.

DEFINITION 81. The Patterson inner product is

( f ,g) =
1

vol(Γ\H)

∫
Γ\H

f (z)g(z)ykdA(z) .

This makes Sk(Γ,χ) into an inner product space. Note that this definition is independent of the
choice of Γ.

DEFINITION 82. Ek(Γ,χ) is the orthogonal complement of Sk(Γ,χ) in HkGx.
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FACT 83. (Riemann-Roch) Let g be the genus of Γ, {eu} the orders of the elliptic points and t
the number of cusps. Then for k even,

dimSk(Γ) =



(k−1)(g−1)+ k
2 ∑u

(
1− 1

eu

)
+
( k

2 −1
)

t k > 2

g k = 2
1 k = 0, t = 0
0 k = 0, t > 0
0 k < 0

and

dimHk(Γ) =



dimSk(Γ)+ t k > 2
dimSk(Γ)+ t−1 k = 2, t > 0
dimSk(Γ) k = 2, t = 0
1 k = 0
0 k < 0

.

EXAMPLE 84. Y (1) has one elliptic point of order 2, one elliptic point of order 3 and one cusp.
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Math 613: Problem set 4 (due 18/10/09)

The weight-k action

OPT For a field F let P1(F) denote the set of 1-dimensional subspaces of F2. Write
[

a
b

]
for the

subspace generated by the vector
(

a
b

)
∈ F2 \{0}.

(a) Show that a set of representatives for P1(F) is given by
{[

z
1

]}
z∈F

togther with the

“point at infinity”
[

1
0

]
which we can also denote

[
∞

1

]
.

(b) Show that the action of GL2(F) on F2 induces an action on P1(F), given in co-ordinates

by g
[

z
1

]
=
[ az+b

cz+d
1

]
(don’t forget the case z = ∞).

— Let j(g,z) = cz + d so that g
(

z
1

)
=
(

g · z
1

)
j(g,z). For f defined on P1(F) set (for-

mally) ( f |kg)(z) = f (g · z) j(g,z)−k.
(c) Show that j(g ·g′,z) = j(g,g′ · z) j(g′,z).
(d) Show that f 7→ f |kg is a right action of SL2(F).

(e) Using det
(

z+dz z
1 1

)
= dz show that d(gz) = 1

j(g,z)2 dz as formal differentials on P1(F).

2. (Linear independence) We now specialize to the case of SL2(R)→ PGL2(C) acting on P1(C),
where the action restricts to an action on H.
(a) Show that j(g,z) 6= 0,∞ for g ∈ SL2(R), z ∈ H, so that the formal calculation of part 1

applies here.
(b) Show that j(g,z) = j(g′,z) as functions iff g′g−1 ∈ P.
(c) Let Γ < SL2(R) be a discrete subgroup and assume that Γ∞ = Γ∩P is of infinite index in

Γ. Find {γm}∞

m=1 ⊂ Γ such that { j(γm,z)} are distinct functions.
(d) Choose fk ∈ Ωk(Γ) for each k (such that all but finitely many are zero) and assume that

∑k fk = 0. Show that for each m we have ∑k j(γm,z)k fk(z) = 0.
(e) Show that for m large enough the system of linear equations above for fk is invertible, and

conclude that each fk = 0.
(f) Conclude that the sum ∑k Ωk(Γ)(Γ) is direct.

More on cusps

3. Let Γ be a Fuchsian group of the first kind, XΓ = Γ\H∗ its associated closed Riemann sur-

facethe element T =
(

1 1
1

)
∈ PSL2(R).

(a) Let ξ ∈ ∂H be a cusp of Γ, and let γ ∈ Γ \ Γξ . Show that the set of z for which the
geodesic L(z,γz) = {w | d(w,z) = d(w,γz)} ends at ξ is a Euclidean circle. Conclude that
for almost all z, for all γ 6= idwe have γz 6= z and if line L(z,γz) touches a cusp ξ then
γ ∈ Γξ .
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– Fix such z and let FDbe its associated Dirichlet domain.
(b) Let ξ ,η ∈ ∂H be two vertices at infinity of FD. Show that they are Γ-inequivalent.
— Conclude that the vertices at infinity {ξk}K

k=1 ofFD are representatives for the Γ−equivalence
classes of cusps of Γ.

(c) For each k let σk ∈ SL2(R) be such that σk∞ = ξk. Show that σ
−1
k FD ∩{y(z) > Y} is a

vertical strip [x0,x0 +h]× (Y,∞) for Y large enough.
Hint: Consider the two sides meeting at the vertex ξk.

OPT Show that we can choose σk such that σ
−1
k FD∩{y(z) > Y}=

[
−1

2 , 1
2

]
× (Y,∞) and that

in that case the image of σ
−1
k Γξk

σk in PSL2(R) is the group generated by T .
(e) Set Fk,Y = σk

[
−1

2 , 1
2

]
× (Y,∞) and FY = FD \

⋃
kFk,Y . Show that for Y large the Fk,Y are

disjoint and FY is compact.

4. The invariant height on Γ\H is defined by

yΓ(z) = max
k

max
γ∈Γ

y(σkγz) .

(a) Show that maxγ∈Γ y(σkγz) is finite and continuous.
Hint: By problem set 3, problem 8(c) the set of y-values is discrete and bounded above.

(b) Show that yΓ is a continous Γ-invariant function on H. Show that yΓ(zn)→ ∞ if zn ap-
proach a cusp.

(c) Show that {z ∈ Γ\H | yΓ(z)≤ Y} is compact, and that if yΓ(zn)→∞ then there is a subse-
quence which converges to a cusp.
Hint: The first part is variant of 3(d).

5. Let f ∈ A0(Γ) = C(XΓ) be a meromorphic function on XΓ.
(a) Show that for Y large enough f has no zeroes or poles in the region yΓ(z) > Y .
— Assume now that Y is also large enough for 3(d) to hold. Let CY be the contour that goes

along the boundary of FD except that at each cusps one truncates the cusp along the curve
yΓ = Y , and write CY = C0

⋃
∪kCk where C0 = CY ∩∂FD and Ck is the closed horocycle at

the kth cusp.
(b) Show that 1

2πi
∮

C0

f ′
f dz = 0 using the side-pairings and the invariance of yΓ.

(c) Evaluate 1
2πi
∫

Ck

f ′
f dz in terms of the behaviour of f at ξk by mapping the cusp neighbour-

hood to a punctured disk.
(d) Since 1

2πi
∮

CY

f ′
f dz counts the zeroes and poles in FY , show that f has the same number of

zeroes and poles in XΓ.

6. X(1) = Γ(1)\H∗. We have seen in class that j : X(1)→ P1(C) is a biholomorphism. In
particular, all values are simple.
(a) Let f ∈A0(Γ(1)) be non-constant. Construct g∈C( j) such that f ,g have the same zeroes

and poles in Y (1).
Hint: j(z)− j(z0) has a simple zero at z0, a pole at the cusp, and no other zeroes or poles.

(b) Show that f
g has no zeroes or poles in Y (1), and conclude that it has no zeroes or poles in

X(1).
(c) Applying the maximum principle show that f

g is constant and conclude that C(X(1)) =
A0(Γ(1)) = C( j).
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On the choice of σξ

7. Let Γ be a Fuchsian group with a cusp ξ , and let σ ,σ ′ ∈ SL2(R) such that σ∞ = σ ′∞ = ξ .
Let f ∈Ωk(Γ).
(a) Show in the definition of f being meromorphic/holomorphic/vanishing at ξ using σ or σ ′

would not change the conclusion.
(b) Assume that f is meromorphic at ξ or holomorphic on H. In either case show that the

Fourier expansion of f at ξ is essentially independent of the choice σ or σ ′. Is the expan-
sion truly independent of the choice?

The cusps of congruence subgroups

8. Let Γ be a Fuchsian group, and let Γ′ be a subgroup of finite index.
(a) Show that Γ and Γ′ have the same cusps.
(b) Let ξ be a cusp of Γ. Show that the Γ′-equivalence classes of cusps which are Γ-equivalent

of ξ are in bijection with the double coset space Γ′\Γ/Γξ .
(c) Let ΓN < Γ′ be normal in Γ, and write bars for the image in the quotient group Γ̄ = ΓN\Γ.

Show that the map Γ→ Γ̄ induces a bijection Γ′\ΓN/Γξ → Γ′\Γ̄/Γξ .

9. Let Γ(1) = SL2(Z) and recall its subgroups Γ(N) < Γ0(N) < Γ1(N) from Problem set 3.
(a) Show that the cusps of Γ(1) are precisely P1(Q) = Q∪{∞} ⊂ R∪{∞} = ∂H, and that

Γ(1) acts transitively there.
— Let Γ∞ = Γ(1)i∞ and let Γ+

∞ = 〈T 〉 where T is the translation.

(b) Let Γ̄ = SL2(Z/NZ). Show that the map
(

a b
c d

)
7→ (c,d) induces a bijection between

Γ/Γ+
∞ and the set of elements of order N in (Z/NZ)2.

Hint: This was already done in PS3.
(b) Show that X0(N) = XΓ0(N) has ∑d|N φ ((d,N/d)) cusps. In particular, for p prime X0(p)

has two cusps – in this case find representatives.
OPT Count the cusps of X(N) = XΓ(N) and X1(N) = XΓ1(N).
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3.2. Eisenstein series and Poincaré series

EXERCISE 85. Write the Eisenstein series for Y (1) as sums over Γ(1)∞\Γ(1).

LEMMA 86. Let f be holomorphic in a domain Ω⊂C. Let p≥ 1 and assume that B(z0,3r)⊂
Ω. Then f (z)�r,k,p

∥∥∥ f · yk/2
∥∥∥

Lp(B(z0,3r))
uniformly for z ∈ B(z0,r).

PROOF. Cauchy formula. �

COROLLARY 87. (Banach spaces of holomorphic functions) If
{

fnyk/2
}∞

n=1
⊂ Lp(Ω) con-

verges in the Lp norm then the convergece is also locally uniform and the limit is f · yk/2 with f
holomorphic.

LEMMA 88. Let fn converge uniformly on compact subsets of Ω\{z0}. Then also on Ω.

PROOF. Cauchy integral formula. �

DEFINITION 89. Γ Fuchsian, χ character of finite order, Λ <Γ subgroup. φ(z) ∈Ωk(Λ,χ) and
has finitely many poles in Λ\H. Assume that φ(z)yk/2 has finite L1-norm away from its poles on
Λ\H′ where one takes away a cusp neighbourhood for each cusp of Γ. Set

F = ∑
γ∈Λ\Γ

χ(γ)φ |kγ.

PROPOSITION 90. The series converges locally uniformly absolutely.

PROOF. Take nbd W of z whose translates by Γ are disjoint and stay away from poles of φ

and cusps. Then
∫

W ∑γ |(φ |kγ)(z)|yk/2dA(z) is bounded. Near a pole note that only finitely many
translates are on a pole. �

PROPOSITION 91. Assume: if x is not cusp of Λ, φ |kσ � |z|−1−ε (ε > 0), near a cusp �
|z|−δ (δ ≥ 0) . Then f is holo at cusps, vanishes at cusps of Γ which are not cusps of Λ, and is a
cusp form if δ > 0.

PROOF. Fix a cusp x0. For α ∈ Λ\Γ/Γx0 set φα to be the sum for φ |kα over β ∈ α−1Λα ∩
Γx0\Γx0 (i.e. such that βx0 = αx0). Then φα is holo at x0 and vanishes there if αx0 is not a cusp
of Λ or if d > 0. F is defined by a sum which converges absolutely in compact neighbhourhoods
of a cusp neighbhourhood punctured at the cusp, so it follows that F is holomorphic at cusps and
vanishes at those which aren’t cusps of Λ. If δ > 0 F is a cusp form. �

EXAMPLE 92. ∞ a cusp of Γ, φm(z) = e(m
h z), get g(m)

k (z) = Pm(z).

THEOREM 93. Let k ≥ 3. Then g(m)
k ∈ Hk(Γ,χ), vanishes at all cusps other than ∞, and also

at ∞ if m≥ 1. For m = 0 the constant coefficient at ∞ is 1.

PROPOSITION 94. Let fk ∈ Sk(Γ,χ) have Fourier expansion ∑
∞
n=1 ane(nz/h) at ∞. Then(

g(m)
k , f

)
=

{
0 m = 0
am(4πm)1−khk(k−2)! m≥ 1

PROOF. Unfolding. �
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THEOREM 95. g(m)
k generate Sk(Γ,χ). The Eisenstein series generate the complement.

PROOF. By Proposition 94, a cusp form orthorgonal to all of g(m)
k vanishes. The Eisenstein

series are clearly linearly independent; dimension count shows they have the right span. �

3.3. Maass forms

Brief discussion; Fourier expansion; Eisenstein series; the spectral decomposition.
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CHAPTER 4

Hecke Operators

4.1. Abstract Hecke algebras

4.1.1. Commensurators and Double cosets. Fix a group G.

DEFINITION 96. Call Γ,Γ′ < G commensurable if Γ∩Γ′ has finite index in both and write
Γ ≈ Γ′. Say g ∈ G commensurates Γ if gΓg−1 ≈ Γ′, and write Comm(Γ) for the set of elements
that commensurate it.

EXAMPLE 97. If Γ = SL2(Z)⊂ GL2(R) = G then Comm(Γ) = R× ·GL2(Q).

PROPOSITION 98. (Commensurators)
(1) Commensurability is an equivalence relation, equivariant under conjugation in G.
(2) Comm(Γ) is a subgroup of G containing Γ.
(3) If Γ≈ Γ′ then they have the same commensurator.

REMARK 99. (Topology) Γ≈ Γ′ means Γ\X and Γ′\X have a common finite cover.

LEMMA 100. (Double coset decomposition) Let Γ≈ Γ′ and let α ∈ Comm(Γ). Then Γ\ΓαΓ′

and ΓαΓ′/Γ′ are finite.

PROOF. Multiplying by α−1 on the left gives a bijection Γ\ΓαΓ′↔ (α−1Γα)\
(
α−1ΓαΓ′

)
↔(

α−1Γα ∩Γ′
)
\Γ′. In fact, this shows that ΓαΓ′ = tiΓαi where Γ′ = ti

(
α−1Γα ∩Γ′

)
αi. �

4.1.2. Abstract Hecke algebra.

DEFINITION 101. (Hecke algebra) Give a group G, a family Ξ of commensurable subgroups,
and a semigroup ∆ of G contained in the commensurator and containing all the subgroups. For
Γ,Γ′ ∈ Ξ let HR(Γ,Γ′;∆) be the free R-module generated by the double cosets {ΓαΓ′}

α∈∆
. When

R = Z we omit the subscript and we write HR(Γ;∆) for HR (Γ,Γ;∆).

DEFINITION 102. Given ΓαΓ′=tiΓαi and Γ′βΓ′′=t jΓ
′β j set ΓαΓ′ ·Γ′βΓ′′= ∑i, j Γαiβ jΓ

′′ ∈
HR(Γ,Γ′′;∆), and extend to a bilinear map HR(Γ,Γ′;∆)×HR(Γ′,Γ′′;∆)→HR(Γ,Γ′′;∆)

LEMMA 103. ΓαΓ′ ·Γ′βΓ′′ is indep of the choice of representatives. The map is associative
where defined.

PROOF. The multiset of cosets Γαiβ j is Γ′′-invariant. �

Now fix a right R[∆]-module M. For m ∈MΓ and α ∈ ∆ write m|ΓαΓ′
def= ∑i m|αi and extend

linearly to HR(Γ,Γ′;∆).

LEMMA 104. m|ΓαΓ′ ∈MΓ′ and is indep of the choice of representatives. This extends to an
action of the ensemble of operators.
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COROLLARY 105. HR(Γ;∆) is an associative algebra under the product with unit element Γ,
and MΓ is stable under this algebra.

DEFINITION 106. deg(ΓαΓ) = #Γ\ΓαΓ, extended linearly to HR(Γ;∆) where it is multiplica-
tive.

LEMMA 107. If #Γ\ΓαΓ′ = #ΓαΓ′/Γ′ then they have a common set of reps.

PROOF. ΓαΓ = tiΓαi, α ′j on other side. if Γαi ⊂ ∪k 6= jα
′
kΓ′ then the same would hold for

ΓαiΓ
′, a contradiction, so Γαi∩α ′jΓ 6= /0. Now take δi ∈ Γαi∩α ′i Γ

′. �

THEOREM 108. Let ι be an anti-involution of ∆ fixing Γ such that ΓαΓ = Γα ιΓ for all α ∈ ∆.
Then HR(Γ;∆) is commutative.

PROOF. Note first that the assumption means (ΓαΓ)ι = ΓαΓ for all α ∈ ∆. In particular
ι : Γ\ΓαΓ→ (ΓαΓ)ι /Γι = ΓαΓ/Γ is a bijection. By the Lemma we have ΓαΓ = tiΓαi = tiαiΓ

and ΓβΓ = t jΓβ j = t jβ jΓ. Acting by ι we find Γ = tiΓα ι
i and Γ = t jΓβ ι

j . We then have
ΓαΓ ·ΓβΓ = ∑i, j Γαiβ jΓ and ΓβΓ ·ΓαΓ = ∑i, j Γβ ι

j α ι
i Γ and we are done. �

On space of aut forms: equality of reps by volume computation. Adjoint of α is (detα)α−1.

4.1.3. Hecke operators. Let M by a right ∆-module. For Γ,Γ′ ∈Ξ and α ∈∆ so that Γ\ΓαΓ′=
tiΓαi, let ΓαΓ′ : MΓ→MΓ′ be given by

m | ΓαΓ = ∑
i

mαi .

LEMMA 109. This is well-defined, associative where this makes sense.

Now let Γ⊂ G = GL2(R)+ be a Fuchsian group, Γ⊂ ∆⊂ G = Comm(Γ) a semigroup. Fix a
character χ of ∆ such that χ �Γ is of finite order. Let Ξ be the set of finite-index subgroups of Γ.
Let ∆ act on Ωk(Γ,χ) by

f α(z) = det(α)k/2−1
χ(α)( f |kα)(z)

= det(α)k−1
χ(α) j(α,z)−k f (αz) .

DEFINITION 110. For Γ1,Γ2 ∈Ξ, α ∈ ∆ so that Γ1αΓ2 =tiΓ1αi we define the Hecke operator
Γ1αΓ2 : Ωk(Γ1,χ)→Ωk(Γ2,χ) by

f |kΓ1αΓ2 = ∑
i

f αi .

LEMMA 111. Γ1αΓ2 preserves holomorphy in H and at the cusps, and also cuspdiality.

PROPOSITION 112. For α ∈G set α ′= det(α)α−1. Let f ∈S(Γ), g∈H(Γ). Then ( f |kα,g) =
( f ,g|kα) and ( f |kΓαΓ,g) = ( f ,g|kΓα ′Γ).

PROOF. Let Γ′= α−1Γα∩Γ, think of f |kα and g as elements ofHk(Γ′), and evaluate ( f |kα,g)
there. We then act by α−1 which is measure-preserving, letting Γ′′ = Γ∩αΓα−1 and noting that
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α ′z = α−1z:

( f |kα,g) =
1

vol(Γ′\H)

∫
Γ′\H

det(α)k/2(cz+d)−k f (αz)g(z)y(z)kdA(z)

=
1

vol(Γ′′\H)

∫
Γ′′\H

det(α)k/2(c(α−1z)+d)−k f (z)g(α−1z)y(α−1z)kdA(z)

=
1

vol(Γ′′\H)

∫
Γ′′\H

det(α ′)k/2(c(α
′
z)+d)−k f (z)g(α ′z)y(α

′
z)kdA(z)

=
1

vol(Γ′′\H)

∫
Γ′′\H

det(α ′)k/2(c
dz−b
−cz+a

+d)−k f (z)g(α ′z)
det(α ′)ky(z)k

|−cz+a|2k dA(z)

=
1

vol(Γ′′\H)

∫
Γ′′\H

det(α ′)k/2 det(α ′)k

(cdz−bc−dcz+ad)−k f (z)(−cz+a)−kg(α ′z)y(z)kdA(z)

=
1

vol(Γ′′\H)

∫
Γ′′\H

f (z)(g|kα ′)(z)y(z)kdA(z)

= ( f ,g|kα) .

Moreover, vol(Γ′\H) = vol(Γ′′\H) shows [Γ : Γ′] = [Γ : Γ′′] and hence Γ\ΓαΓ and ΓαΓ/Γ

have a common set of representatives, say αi. It follows that ΓαΓ = tiΓαi and Γα−1Γ = tiΓα
−1
i

and hence Γα
′
Γ = tiΓα

′
i . Thus:

( f |ΓαΓ,g) = ∑
i

det(α)k/2−1 ( f |kαi,g)

= ∑
i

det(α ′)k/2−1
(

f ,g|kα
′
i

)
=

(
f ,g|Γα

′
Γ
)

.

�

COROLLARY 113. The Hecke algebra HR(Γ;∆) preserves the spaces of cusp forms and Eisen-
stein series; spaces corresponding to different character are orthogonal.

4.2. Congruence subgroups and their Hecke algebras

DEFINITION 114. Γ < SL2(Z) is called a congruence subgroup if Γ⊃ Γ(N) for some N.

REMARK 115. Γ(N)⊂ Γ1(N)⊂ Γ0(N). Also
(

N 0
0 1

)−1

Γ(N)
(

N 0
0 1

)
⊃ Γ0(N2). It fol-

lows it’s enough to consider one of the subgroups.

Now Γ1(N)C Γ0(N) with quotient (Z/NZ)×. For χ a Dirichlet character mod N and γ =(
a b
c d

)
set χ(γ) = χ(d), and write:

Ωk(N,χ) = Ωk(Γ0(N),χ) .

REMARK 116. This is an orthogonal decomposition of Ωk(Γ1(N)) (consider Hecke operators
given by γ ∈ Γ0(N)).

LEMMA 117. (standard involutions)
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(1) Let ωN =
(

−1
N

)
. Then ω2

N =
(
−N 0

0 −N

)
, and f 7→ f |kωN gives isomorphisms

(N,χ)→ (N, χ̄).
(2) Let f̄ (z) = f (−z̄). This is also such an isom; in terms of the Fourier expansion this maps

∑n≥0 ane(nz) to ∑n≥0 āne(nz).

PROOF. First part clear. For second part use the following involution on SL2(Z):
(

a b
c d

)
→(

a −b
−c d

)
. �

DEFINITION 118. ∆0(N)=
{(

a b
c d

)
∈M2(Z)+ | c≡ 0(N), (a,N) = 1

}
and ∆∗0(N)=

{(
a b
c d

)
∈M2(Z)+ | c≡ 0(N), (d,N) = 1

}
.

REMARK 119. The two involutions carry one to the other.

LEMMA 120. These are semigroups containing Γ0(N); for α ∈ ∆0(N) there are unique l|m

positive, (l,N) = 1 such that Γ0(N)αΓ0(N) = Γ0(N)
(

l 0
0 m

)
Γ0(N).

PROOF. Λ = Z2, Λ0 = Ze1⊕NZe2. Then αΛ0⊂Λ0 and [L : αL0] = [L : αL] [L : L0] = nN with
n = det(α). We have αL0 = Zaw1⊕Zbw2 for a basis w1,w2 of L (we may assume it positively
orientied by changing w2 to −w2). Here a|b and ab = nN. We have (a,N) = 1 since αL0 6⊂ tL
for any divisor t (check first co-ordinate). Let l = a, m = b/N. Then L0 = Zw1⊕ZNw2 (unique
submodule of index N contaning αL0) and αL = Zlw1⊕Zmw2 since this is unique submodule of
L of index n containing αL0. Change of basis and we are now done. L/αL gives l,m uniquely. �

COROLLARY 121. If (lm,N) = 1 then Γ0(N)
(

l 0
0 m

)
Γ0(N) = Γ0(N)

(
m 0
0 l

)
Γ0(N).

THEOREM 122. The Hecke algebras are commutative.

PROOF. Use involution
(

a b
Nc d

)
7→
(

a c
Nb d

)
. �

DEFINITION 123. For l|m, (l,N) = 1 set T (l,m) = Γ0(N)
(

l 0
0 m

)
Γ0(N), for (n,N) = 1 set

Tn = ∑det(α)=n Γ0(N)αΓ0(N) = ∑lm=n T (l,m). For p prime, Tp = T (1, p). Stars indicate operators
wrt ∆∗0(N) (put superscript (N) to indicate the level if needed).

For a Dirichlet character χ mod N set χ

((
a b
c d

))
= χ̄(a) on ∆0(N) and χ∗

((
a b
c d

))
=

χ(d) on ∆∗0(N). Both restrict to the usual character of Γ0(N).

REMARK 124. Conjugation by ωN maps ∆0(N) to ∆∗0(N) and χ∗ to χ̄ .

PROPOSITION 125. For f ∈Hk(N,χ) and n = lm relatively prime to N
(1) f |T ∗(m, l) = χ̄(lm) · f |T (l,m) and f |T ∗n = χ̄(n) · f |Tn. In particular, T (l,m) and T ∗(m, l)

commute as do Tn and T ∗n .
(2) The adjoint of T (l,m) is T ∗(m, l), the same for Tn,T ∗n .
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PROOF. First, say Γ0(N)
(

l 0
0 m

)
Γ0(N) = Γ0(N)

(
m 0
0 l

)
Γ0(N) = tiΓ0(N)αi. Also, if

α ∈ ∆0(N)∩∆∗0(N) then χ∗(α) = χ(a) = χ̄(d)χ(ad) = χ(det(α))χ(α), so

f |T ∗(m, l) = ∑
i

χ∗(αi) f αi

= χ̄(lm)∑
i

χ(αi) f αi

= f |T (l,m) .

Next, by Prop 112 the adjoint of T (l,m) is Γ0(N)
(

l 0
0 m

)′
Γ0(N) = Γ0(N)

(
m 0
0 l

)
(N) =

T ∗(m, l). �

COROLLARY 126. All the T (l,m) and Tn (prime to N) can be jointly diagonalized.

PROOF. This is a commuting family of normal operators. �

REMARK 127. The action of ωN conjugates T (l,m) acting on Hk(N,χ) to the action of
T ∗(m, l) onHk(N, χ̄).

LEMMA 128. For e ≥ 1, Γ0(N)\Γ0(N)
(

1 0
0 pe

)
Γ0(N) is given by

(
pe− f m

0 p f

)
where

0≤ f ≤ e, 0≤ m < p f , (p f , pe− f ,m) = 1 if p - N, only f = e if p|N.

PROOF. Let β =
(

a b
Nc d

)
∈ Γ0(N)

(
1 0
0 pe

)
Γ0(N). Then det(β ) = pe so (a,Nc) =

(a,c) is a power of p, (equality since (a,N) = 1). If p|N then (a,Nc) = 1 and so there is γ1 =(
∗ ∗
−Nc a

)
. Then γ1β =

(
1 ∗
0 pe

)
. If (p,N) = 1 set a′ = a/(a,c) and c′ = c/(a,c). These

are relatively prime so can choose γ1 ==
(

∗ ∗
−Nc′ a′

)
then γ1β =

(
pe− f ∗

0 p f

)
. In any case

now act by
(

1 1
0 1

)
on the left to make 0≤m < p f . It follows that the double coset is contained

by the cosets of
(

pe− f m
0 p f

)
where 0≤ f ≤ e, 0≤ m < p f . We first show that these cosets are

disjoint. Indeed, if

γ

(
pe− f m

0 p f

)
=
(

pe−g n
0 pg

)
.

Then γ is integral, upper-triangular with diagonal p f−g, pg− f so f = g and γ =
(

1 a
0 1

)
so

m≡ n(p f ). Finally, we checke which of these cosets lie in the double coset: we have(
1 m
0 pe

)
=
(

1 0
0 pe

)(
1 m
0 1

)
∈ Γ0(N)

(
1 0
0 pe

)
Γ0(N)

and

Γ0(N)
(

pe− f m
0 p f

)
Γ0(N) = Γ0(N)

(
pa 0
0 pb

)
Γ0(N)
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for some 0≤ a≤ b with a+b = e. We consider the quotient Z2/αZ2. This is Z/paZ⊕Z/pbZ so

the double coset is from
(

1 0
0 pe

)
iff αZ2 6⊂ pZ2, which is the case iff

(
pe− f , p f ,m

)
= 1. �

COROLLARY 129. deg
(

Γ0(N)
(

1 0
0 pe

)
Γ0(N)

)
= 1+∑

e−1
f =1(p f − p f−1)+ pe = pe + pe−1.

EXERCISE 130. If (m,m′) = 1 then T (l,m)T (l′,m′) = T (ll′,mm′); if (n,n′) = 1 then TnTn′ =

Tnn′ . Also, Tn =t(a,N)=1tad=nt0≤b<dΓ0(N)
(

a b
0 d

)
. This the Hecke algebra is the polynomial

ring on Tp,T (p, p) for p - N and Tq for q|N.

LEMMA 131. Let γa ∈ Γ0(N) satisfy γa ≡
(

1 a
1

)
(p), and if p - N let γp ∈ Γ(N) satisfy γp ≡(

0 −a
a−1 0

)
(p). Then representatives for Γ0(pN)

(
1

p

)
Γ0(N) are given by

{
Γ0(pN)

(
1

p

)
γa

}
a(p)

plus Γ0(pN)
(

1
p

)
γp.

PROOF. Let Γ′ = Γ0(N)∩
(

1
p

)−1

Γ0(pN)
(

1
p

)
= Γ0(N)∩Γ0(p) (transpose). Need

representatives for Γ′\Γ0(N). Write N = N′pe with (p,N′) = 1, reduce mod pN and use the Chi-
nese Remainder Theorem. In the SL2(Z/N′Z) factor both map to the same subgroup, so it remains
to consider the other factor. If N = N′ then Γ0(N) surjects there while Γ′ maps to lower-triangular
matrices with the quotient of size p+1. Otherwise a direct calculation finishes the proof. �

4.3. Fourier expansion and Newforms (Atkin-Lehner Theory)

4.3.1. The space of newforms. Note that i∞ is a cusp of Γ0(N) of width 1. Let

f (z) =
∞

∑
m=0

cme(mz) .

Then

( f |Tn)(z) = nk−1
∑

ad=n

d−1

∑
b=0

χ(a)d−k f ((az+b)/d)

= nk−1
∑

ad=n
χ(a)d−k

∞

∑
m=0

d−1

∑
b=0

cme(
maz+mb

d
)

= nk−1
∑

ad=n
χ(a)d−kd

∞

∑
m=0

cmde(maz)

=
∞

∑
m=0

(
∑

0<a|(m,n)
χ(a)ak−1c mn

a2

)
e(mz) .

In particular, the 1st coefficient is cn.

COROLLARY 132. (Weak multiplicity one) Assume f |Tn = λn f for all n. Then cn = λnc1, and
in particular f is uniquely determined up to a constant multiple.
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Now fix δl =
(

l 0
0 1

)
∈ ∆∗0(N), so f (lz) = l−k/2 ( f |kδl)(z). Since δlΓ0(lN)δ−1

l ⊂ Γ0(N) it

follows that f ∈ Hk(N,χ)⇒ f (lz) ∈ Hk(lN,χ), and that this preserves cuspidality (can interpret
this via the Hecke operator Γ0(N)δlΓ0(lN) = Γ0(N)δl).

DEFINITION 133. Let mχ be the conductor of χ , and let Sold
k (N,χ)= ∑mχ |M 6=N ∑Ml|N Sk(M,χ)·

δl ⊂ Sk(N,χ). Call these oldforms. The orthogonal complement Snew
k (N,χ) is called the space of

newforms.

EXAMPLE 134. If χ is primitive then Sk(N,χ) = Snew
k (N,χ).

REMARK 135. It is clear that Sold
k (N,χ) is generated by the images of Snew

k (M,χ) under δl .

4.3.2. “Level lowering”.

LEMMA 136. If (n, lM)= 1 then Tn commutes with the two embeddingsHk(M,χ)→Hk(lM,χ)
given by the identity map and δl . More precisely, for f ∈Hk(M,χ),

(1) f |T (M)
n = f |T (lM)

n .
(2) f |T (M)

n ·Γ0(M)δlΓ0(lM) = f |Γ0(M)δlΓ0(lM) ·T (lM)
n

PROOF. Enough to check for T (p, p) and T (p), and the action of T (p, p) is always the same.
For T (p) in case (1) the coset representatives are the same (Lemma 128). In case (2), we take the

standard representatives
{(

1 b
p

)}
b(p)
∪
{(

p
1

)}
. Then

f |kδl|T
(lM)
p = pk/2−1

∑
b(p)

f |kδl

(
1 b

p

)
+ pk/2−1

χ(p) f |kδl

(
p

1

)
= pk/2−1

∑
b(p)

f |k
(

1 lb
p

)
δl + pk/2−1

χ(p) f |k
(

p
1

)
δl

= f |T (M)
p δl

since (l, p) = 1. �

COROLLARY 137. If (n,N) = 1 then the action of T (N)
n preserves the decomposition Sk(N,χ) =

Sold
k (N,χ)⊕Snew

k (N,χ).

PROOF. The adjoint of Tn is χ̄(n)Tn. �

LEMMA 138. If p - l then the two embeddings intertwine Γ0(pN)
(

1
p

)
Γ0(N) and Γ0(pM)

(
1

p

)
Γ0(M),

M = lN.

PROOF. Similar argument using the representatives of Lemma 131 and noting that p|M iff
p|N. �

THEOREM 139. Let f = ∑n≥0 ane(nz)∈Hk(N,χ) and assume an = 0 for all n prime to l. Then
for each prime p|

(
l,N/mχ

)
there is fp ∈Hk(N/p,χ) such that

f (z) = ∑
p

fp(pz) .
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Moreover, if f is a cusp form we may choose the fp to be cusp forms as well, and in particular
f ∈ SkoNx.

We may assume l squarefree, and will proceed by induction on the number of prime factors. When
l is prime, we note that f (z/l) satisfies the assumptions of the following theorem:

PROPOSITION 140. Let l be a positive integer, and let f be a function on T Z\H such that
f (lz) ∈ Hk(N,χ).If lmχ |N then f ∈ Hk(N/l,χ); otherwise f = 0. If f (lz) is cusp form then so is
f .

PROOF. By induction may assume l prime. Let Γ′= Γ0(N)∩Γ0(l) (transpose). Then δ
−1
l Γ′δl ⊂

Γ0(lN). For γ ∈ Γ′ we have:

f |kγ = f |kδlδ
−1
l γδlδ

−1
l

= ( f |kδl) |kδ
−1
l γδl|kδ

−1
l

= χ(δ−1
l γδl) f |kδl|kδ

−1
l

= χ(γ) f .

It follows that f ∈ Hk(Γ′′,χ) where Γ′′ is the group generated by Γ′ and T . [Γ′′ : Γ′] ≥ l while
[Γ0(N) : Γ′]≤

[
Γ(1) : Γ0(l)

]
= l +1 so Γ′′ = Γ0(N) and f , f |kδl ∈ Sk(N,χ).

Assume first that (l,N)= 1. Then Γ0(N)δlΓ0(N)= Γ0(N)
(

1
l

)
Γ0(N). Since

(
1

l

)
T
(

1
l

)−1

/∈

Γ0(N), there is γ ∈ Γ0(N) such that δlγδ
−1
l /∈ Γ0(N). But δlγδ ′l ∈ ∆0(N) so there are 0 < u|v and

γ1,γ2 ∈ Γ0(N) so that γ1δlγδ ′l γ2 =
(

u
v

)
. We have u < v (otherwise δlγδ

−1
l ∈ Γ0(N)) and then

f |k
(

u
v

)
= C f for C 6= 0 so f (z/h) = C′ f for C′ 6= 0 for h = v/u > 1. The Fourier expansion

shows that this is impossible, so f = 0.

Assume next that l|N. Then f |k
(

1
N/l 1

)
= f |kδl

(
1
N 1

)
δ
−1
l = f . Since Γ1(l/N) is

generated by this element and Γ1(N) we can write f uniquely in the form ∑ρ fρ where fρ ∈
Sk(N

l ,ρ). Now let γ ∈ Γ0(N). Then ∑ρ ρ(γ) fρ = f |kγ = χ(γ) f . If f 6= 0 it follows that χ extends
a character ρ mod N/l, and in particular that mχ |Nl . �

We note that the argument in the case (l,N) = 1 shows:

LEMMA 141. (Hecke) If α ∈ ∆0(N) with det(α) > 1 and prime to N has relatively prime
entries, then f , f |kα ∈Hk(N,χ) implies f = 0.

Returning to the proof of Theorem 139, we start with a weaker form of the Theorem.

PROPOSITION 142. Let l > 1 be squarefree, f ∈ Hk(N,χ) with an = 0 if (n, l) = 1. Then
f = ∑p|l gp(pz) with gp ∈Hk(Nl2,χ) (if l|N, level Nl suffices). If f is cuspidal so are the gp.

PROOF. By induction on the number of prime factors. If l is prime then g(z) = ∑ane(nz
l )

satisfies the assumptions of Prop 140 and so if f 6= 0 we have f = g(lz) with g ∈ Hk(N/l,χ) ⊂
Hk(Nl2,χ). Otherwise fix a prime factor p of l and write

gp(z) = ∑
p|n

ane
(

n
p

z
)

.

45



Then gp(z) ∈ Hk(N p,χ). Indeed, let N′ = lcm(N, p). Then f |T (N′)
p (z) ∝ ∑n≥0 an ∑b(p) e(n z+b

p ) =
∑p|n ane( n

pz) so gp(z) ∈Hk(N′,χ) and is a cusp form if f is. Consider now

f1 = f (z)−gp(pz) .

This belongs to Hk(N p2,χ) (level N p if p|N, cuspidal if f is) and is supported on Fourier coeffi-
cients which not coprime to l by comprime to p, hence not comprime to l′ = l

p . By induction

f1 = ∑
p′|l′

gp′(p′z)

with gp′ ∈Hk(N p2(l′)2,χ) and we are done. �

In fact, we have also shown:

PROPOSITION 143. (“pre-twisting”) let f ∈Hk(N,χ) and let l be squarefree. Then ∑(n,l)=1 ane(nz)∈
Hk(Nl2,χ), cuspidal if f is (more precisely, for p|l get a factor p if p|N, p2 otherwise).

PROOF. The same argument as above shows that ∑p|n ane(nz) ∈Hk(N pe,χ) with e ∈ {1,2} as
required. Subtract this from f and continue by induction. �

We can now complete the induction step of Theorem 139.

PROOF. Let f be such that an = 0 if (n, l) = 0. Fix a prime factor p of l, set l′ = l/p and set

g(z) = ∑
(n,l′)=1

ane(nz)

h(z) = ∑
(n,l′)6=1

ane(nz)

so that f = g+h. We have g ∈Hk(Nl2,χ) and its Fourier coefficients are non-zero at multiples of
p. If pmχ - N then pmχ - Nl′2 so g = 0 (Prop 140), f = h and we are done by induction. Otherwise
put gp = g( z

p) ∈ Hk(N
p l′2,χ). A calculation with the explicit representatives (Lemma 131) shows

that

g
∣∣∣Γ0(Nl′2)

(
1

p

)
Γ0(Nl′2/p) =

d
p

gp

where d is the degree of the Hecke operator. Thus

g(z) = gp(pz) =
p
d

(
g
∣∣∣Γ0(Nl′2)

(
1

p

)
Γ0(Nl′2/p)

)
(pz)

and we set

fp(z) =
p
d

(
f
∣∣∣Γ0(N)

(
1

p

)
Γ0(N/p)

)
(z) .

Then fp ∈Hk(N/p,χ). Finally, consider f (z)− fp(pz) ∈ HkNx. By the intertwining property,

fp(z) =
p
d

(
f
∣∣∣Γ0(Nl′2)

(
1

p

)
Γ0(Nl′2/p)

)
(z)
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and hence

f (z)− fp(pz) = ( f −g)(z)− ( fp−gp)(pz)

= h(z)− p
d

(
h
∣∣∣Γ0(Nl′2)

(
1

p

)
Γ0(Nl′2/p)

)
(pz) .

Since the FC of h are supported on integers no coprime to l′,

h(z) = ∑
q|l′

hq(qz)

with hq ∈Hk(Nl′3,χ) and since p|N we also have

h
∣∣∣Γ0(l′2N)

(
1

p

)
Γ0(Nl′2/p) = h

∣∣∣Γ0(l′3qN)
(

1
p

)
Γ0(Nl′3q/p)

and since δq intertwines this Hecke operator,

h
∣∣∣Γ0(l′2N)

(
1

p

)
Γ0(Nl′2/p) = ∑

q|l′

(
hq

∣∣∣Γ0(l′3qN)
(

1
p

)
Γ0(Nl′3q/p)

)
(qz)

Now every Fourier coefficient of this expression has q|n for some q|l′, and the same holds for h
so f (z)− fp(pz) has all its Fourier coefficients with (n, l′) = 1 vanish, and we may continue the
induction. �

4.3.3. Newforms. The key result of the theory is the following:

COROLLARY 144. Let f ∈ Snew
k (N,χ) be an eigenfunction of Tn, (n,L) = 1. Then a1( f ) 6= 0.

PROOF. The explicit calcluation above shows that a1( f ) = 0 forces an( f ) = 0 for (n,L) = 1,
and the Theorem shows f is then an oldform. �

THEOREM 145. (Stronger multiplicity one) Let f ,g ∈ Sk(N,χ) with f ∈ Snew
k (N,χ) non-zero,

and assume for each (n,L) = 1 we have f |Tn = λn f and g|Tn = λng. Then g ∝ f .

PROOF. May assume a1( f ) = 1 and N|L. Let g = gold +gnew. Then each is a common eigen-
function, and gnew−a1(gnew) f is supported on (n,L) = 1 so is an oldform hence vanishes. We may
thus assume g∈ Sold

k (N,χ) and show g = 0. For this write g(z) = ∑v gv(lvz) with gv ∈ Snew
k (Mv,χ)

with lvMv|N and Mv < N. We may assume each gv is an eigenfunction of Tn ((n,L) = 1) with
same eigenvalues as f ,g. In particular, a1(g1) 6= 0. Consider g1− a1(g1) · f . Considering the
Hecke eigenvalues the Fourier coefficients prime to L vanish so this is an oldform. But then f is
an oldform, a contradiction. �

DEFINITION 146. A newform (or primitive form) of conductor N is a function f ∈Snew
k (N,χ)such

that:
(1) f is a common eigenfunction of Tn, (n,N) = 1.
(2) a1( f ) = 1 (“arithmetic normalization”)

THEOREM 147. The newforms are common eigenfunctions of the whole Hecke algebra, and
consitute a basis of SknNx.
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PROOF. Let f be a newform. Then f |Tk has same Tn-eigenvalues for all (n,N) = 1. By the
stronger multiplicity one theorem it follows that f |Tk = λk( f ) · f . Next, the Tn may be jointly
diagonalized in SknNx. Normalizing the elements of any basis gives a set of newforms, and every
newform must be represented there. �

COROLLARY 148. Let f ∈ Sk(N,χ) be a joint eigenfunction of Tn. Then there is mχ |M|N and
a newform g of conductor M with same Tn-eigenvalues. If f isn’t in the space of newforms then
M < N.

4.3.4. The involutions. f a newform of conductor N, character χ . Then f |Tn = an( f ) · f
(Hecke ev = Fourier coeff). If (n,N) = 1 then T ∗n is the adjoint so

ān = χ̄(n)an .

LEMMA 149. The two involutions ωN and f 7→ f̄ preserve the decomposition into oldforms
and newforms (switching between χ , χ̄). f 7→ f̄ maps newforms to newforms.

Since f |kωN and f̄ have the same Hecke ev f |kωN = c f̄ for c ∈ C×.

PROPOSITION 150. (“Twisting”) Let f (z) = ∑n≥0 ane(nz)∈Hk(N,χ) and let ψ be a Dirichlet
characater mod q. Then

g(z) =
∞

∑
n=0

anψ(n)e(nz) ∈Hk(M,χψ)

where M = N ·∏p|(q,N) p∏p| q
(q,N)

p2.

DEFINITION 151. Write g = f ⊗ψ .

4.4. Number theory

Integrality of the Fourier expansion, number field of definition.
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CHAPTER 5

L-functions and the Converse Theorem
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Math 613: Problem set 6 (due xx/11/09)

Dirichlet characters

Let N ≥ 1. A Dirichlet character mod N is a non-zero function χ : Z→ C such that χ(ab) =
χ(a)χ(b), χ(a) = χ(b) if a≡ b(N) and χ(a) = 0 whenever (a,N) > 1. We freely identify χ with
the function it induces on Z/NZ
1. Let χ be a Dirichlet character mod N.

(a) Show that χ(1) = 1 and that χ is non-zero in (Z/NZ)×.
(b) Show that the non-zero values taken by χ are roots of unity.
(c) Let ψ,χ be two Dirichlet characters mod N. Show that ψχ is also such a character.

2. (The conductor) Let χ be a Dirichlet character mod N.

(a) Let N|M. Show that the function χM(a) =

{
χ(a) (a,M) = 1
0 (a,M) > 1

is a Dirichlet character

mod M satisfying χM(1+ kN) = 1 if (1+ kN,M) = 1.
— Characters mod M obtained this way with N < M are called imprimitive. Other characters

are called primitive.
(b) Assume that χM = ψM for another character ψ mod N. Show that χ = ψ .
(c) Show that χ is primitive iff χ̄ is.
(*d) Let Qχ = {q≥ 1 | ∀n ∈ Z : (n≡ 1(q)∧ (n,N) = 1)⇒ χ(n) = 1}. Show that if q1,q2 ∈

Qχ then their gcd (q1,q2) ∈ Qχ as well.
Hint: Show first that if q ∈ Qχ then (q,N) ∈ Qχ .

(e) Show that there is a primitive character ψ mod qχ = minQχ such that χ = ψN .

DEFINITION. Call qχ the conductor of χ .

The Gauss Sum

3. (Fourier analysis on Z/NZ) Write L2(Z/NZ) for the space of C-valued functions on Z/NZ,
equipped with the norm

‖ f‖2
L2 = ∑

a(N)
| f (a)|2 .

For f ∈ L2(Z/NZ) and k ∈ Z/NZ set f̂ (k) = ∑a(N) f (a)e(−ak
N ).

(a) For a ∈ Z/NZ show that ∑k∈Z/NZ e(ak
N ) = Nδa,0 (Kronecker delta).

(b) (Parseval formula) Show that
∥∥ f̂
∥∥

L2 =
√

N ‖ f‖L2 .
(c) (Fourier inversion) Show that f (a) = 1

N ∑k (N) f̂ (k)e(ka
N ).
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4. (The Gauss sum) Let χ be a primitive Dirichlet character mod N. For b ∈ Z/NZ we define the
Gauss sum

G(χ,b) = ∑
a(N)

χ(a)e(
ab
N

) .

In particular, write G(χ) = G(χ,1).
(a) Let (c,N) = 1. Show that G(χ,bc) = G(χ,b)χ̄(c). Conclude that if (b,N) = 1 we have

G(χ,b) = G(χ) · χ̄(b).
(b) Let (b,N) > 1. Show that G(χ,b) = 0.
(c) Evaluate |G(χ)|.

Hint: Use Parseval’s identity.
(d) Show that χ(a) = G(χ)

N ∑b(N) χ̄(b)e(−ab
N ).

(e) Show that G(χ̄) = χ(−1)G(χ).

5. (Twisted Poisson summation) Fix a primitive Dirichlet character χ of conductor q.
(a) For f ∈ S(Rn) set (Da f )(x) = f (ax), and (Mp f )(x) = f (x)e(−px). Show that D̂a f (k) =

1
an f̂ ( k

a) and M̂p f (k) = f̂ (k + p).
(b) Prove the twisted Poisson summation formula: for f ∈ S(R) one has

∑
n∈Z

f (n)χ(n) =
G(χ)

q ∑
k∈Z

f̂ (
k
q
)χ̄(k) .

Hint: use the formula from 4(d).

Dirichlet L-functions

Fix a primitive Dirichlet character χ of conductor q. We assume that q > 1, so in particular
χ(0) = 0.

6. (cf PS 2, problem 8) For ϕ ∈ S(R) and r > 0 set ϕχ(r) = ∑n∈Z ϕ(rn)χ(n) and Z(χ;ϕ;s) =∫
∞

0 ϕχ(q−1/2r)rs dr
r .

(a) Show that the sum converges absolutely.
(b) Show that as r→∞,

∣∣ϕχ(r)
∣∣ decays faster than any polynomial and that as r→ 0,

∣∣ϕχ(r)
∣∣=

O(r−1). Conclude that Z(χ;ϕ;s) converges absolutely in ℜ(s) > 1 and defines a holomor-
phic function there.

(c) Show that for ℜ(s) > 1,

Z(χ;ϕ;s) =
∫

∞

1
ϕχ

(
r
√

q

)
rs dr

r
+

G(χ)
√

q

∫
∞

1
ϕ̂χ̄

(
r
√

q

)
r1−s dr

r

(d) Since ϕ ∈ S(R) we also have ϕ̂ ∈ S(R) and ˆ̂ϕ(x) = ϕ(−x). Conclude that Z(χ;ϕ;s)
extends to an entire function of s which satisfies the functional equation

Z(χ;ϕ;s) =
G(χ)
√

q
Z(χ̄; ϕ̂;1− s).
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(e) Assume that ϕ has the same parity as χ , that is that ϕ(−x) = χ(−1)ϕ(x), and show that
for ℜ(s) > 1 we have

Z(χ;ϕ;s) = 2qs/2
(∫

∞

0
ϕ(r)rs dr

r

)
L(s; χ) .

(f) For ϕ ∈ C∞
c (R×),

(∫
∞

0 ϕ(r)rns dr
r

)
extends to an entire function; conclude that E(Λ;s)

extends to a meromorphic function of s.
(g) Set a ∈ {0,1} so that χ(−1) = (−1)a. For ϕ(x) = xa exp

{
−πx2} show that ϕ̂(x) =

(−i)a
ϕ(x) and that ∫

∞

0
ϕ(r)rs dr

r
= 2ΓR(s+a)

where ΓR(s) = π−s/2Γ(s/2). Conclude that L(s; χ) extends to an entire function, and that
the completed L-function Λ(s; χ) = qs/2

χ ΓR(s+a)L(s; χ) satisfies the functional equation

Λ(s; χ) = ε(χ)Λ(1− s; χ̄) ,

where ε(χ) = q−1/2G(χ)(−i)a. Show that |ε(χ)|= 1.

Boundedness in vertical strips

OPT (The Phragmén-Lindelöf Theorem) Let f (s) be continuous in the strip S = {σ + it | σ ∈ [a,b]}
and holomorphic in the interior of the strip.
(a) (Simple version) Assume that | f (s)| ≤M on ∂S and that f is bounded on S. Then | f (s)| ≤

M on S.
Hint: Apply the maximum principle to f (s) · eε(s−s0)2

in an appropriate domain.
— (Functions of finite order) For the rest of the problem we assume that for some C,A ≥ 0

and all s ∈ S we have the a-priori bound| f (s)| ≤Ce|s|
A
.

(b) Show | f (s)| ≤M on ∂S implies | f (s)| ≤M on S.
(c) (Interpolation) Assume that | f (a+ it)| ≤ Ma and that | f (b+ it)| ≤ Mb. Let τ(σ) be the

linear function such that τ(a) = 0, τ(b) = 1. Show that for a≤ σ ≤ b we have

| f (σ + it)| ≤M1−τ
a Mτ

b .

Hint: Find a function g such that |g(s)| is precisely the RHS.
(d) (Polynomial growth on the boundary) Assume that | f (a+ it)| ≤ M (1+ |t|)α and that
| f (b+ it)| ≤M (1+ |t|)β . Show that for some M′ ≥ 0 and all a≤ σ ≤ b we have

| f (σ + it)| ≤M′(1+ |t|)(1−τ(σ))α+τ(σ)β .

(e) Assume now that f is meromorphic in the strip, with only finitely many poles, and that the
assumptions of (d) hold away from fixed neighbourhoods of the poles. Show that, away
from these neighbourhoods, the conclusion holds up to a loss in the constant.
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8. (Boundedness in vertical strips) Let D(s) = ∑n≥1 ann−s be a Dirichlet series which converges
absolutely in ℜ(s) > 1, and write D̄(s) = ∑n≥1 ann−s. Assume that we have a Γ-factor

γ(s) =
d

∏
j=1

ΓR(s+κ j)

with ℜ(κ j) > −1 and a conductor q so that Λ(s) = qs/2γ(s)D(s) is a function of finite order
with finitely many poles in the critical strip and satisfies the fuctional equation

Λ(s) = εΛ̄(1− s)

with Λ̄(s) = qs/2γ(s)D̄(s). Now that the Γ-factor has no zeroes and by the assumption on the
κ j it has no poles in ℜ(s)≥ 1.
(a) Use the functional equation to show that Λ(s) has no poles in ℜ(s) < 0.
— Recall that D(s) is bounded on the line ℜ(s) = σ for any σ > 1.

(b) Deduce from Stirling’s formula that for σ fixed, Γ(s)=
√

2π(it)σ− 1
2 e−

π

2 |t|
(
|t|
e

)it (
1+O( 1

|t|

)
.

(c) Show that for σ < 0 chosen so that we don’t hit poles of the Γ-factor we have |D(σ + it)| ≤
M (1+ |t|)α .

(d) Show that D(s) extends to a meromorphic function in C of finite order with poles dividing
those of Λ(s).

(e) Show that D(s) grows at most polynomially in any vertical strip (away from the its poles).
(f) Conclude that Λ(s) decays exponentially in any vertical strip, away from the poles.
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5.1. Dirichlet series and modular forms

• Formal Dirichlet series, Dirichlet convolution.
• Formal Euler products (Problem set).

LEMMA 152. D(s) = ∑n≥1 ann−s converges at one point iff an is of at most polynomial growth.
In that case:

• The series converges absolutely in a right half-plane ℜ(s) > σa
• The series converges in a right half-plane ℜ(s) > σc.
• σc ≤ σa ≤ σc +1.
• D(s) defines a holomorphic function in the domain of convergence; this function deter-

mines an uniquely.

THEOREM 153. (Landau) If an ≥ 0 then D(s) has a singularity at σa.

LEMMA 154. TFAE:
(1) {an}n≥0 has polynomial growth.
(2) f (z) = ∑n≥0 ane(nz) defines a holomorphic function on Γ∞\H which is bounded as y→∞

and grows at most polynomially as y→ 0, in both cases uniformly in x.
Under these hypothesis we have f (z)−a0 = O(e−2πy) as y→ ∞.

5.2. Hecke theory

For f (z) as above set

IN(s; f ) =
∫

∞

0

[
f
(

iy√
N

)
−a0

]
ys dy

y
.

LEMMA 155. Assume an� nν for ν ≥ 0. Then IN( f ;s) converges locally uniformly absolutely
for ℜ(s) > ν +1 .

PROOF. We have

|IN(s; f )| ≤ ∑
n≥1
|an|

∫
∞

0
e−2πy/

√
Nyσ dy

y

≤
(√

N
2π

)σ

∑
n≥1
|an|n−σ

∫
∞

0
e−yyσ dy

y

=
(√

N
2π

)σ

Γ(σ) ∑
n≥1
|an|n−σ < ∞ .

�

It follows that in the half-plane ℜ(s) > ν +1 we have

IN( f ;s) = Ns/2(2π)−s
Γ(s) ·D(s) .

THEOREM 156. (Hecke) Let f = ∑n≥0 ane(nz), g = ∑n≥0 bne(nz). Then TFAE:

(1) g(z) =
(√

Nz
)−k

f (−1/Nz) = f |kωN .
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(2) IN(s; f ) and IN(s;g) continue meromorphically to Cwith IN(s; f )+ a0
s + ikb0

k−s entire. and
satisfy the functional equation

IN(s; f ) = ikIN(k− s;g) .

PROOF. Set

I(1)
N (s; f ) =

∫
∞

1

[
f
(

iy√
N

)
−a0

]
ys dy

y
and note that this defines an entire function. In the domain of absolute convergence we then have

IN(s; f ) =
∫

∞

1

[
f
(

iy√
N

)
−a0

]
ys dy

y
+
∫ 1

0

[
f
(

iy√
N

)
−a0

]
ys dy

y

= I(1)
N (s; f )− a0

s
+ ik

∫ 1

0
y−kg

(
i

y
√

N

)
ys dy

y

= I(1)
N (s; f )− a0

s
+ ik

∫
∞

1
g
(

iy√
N

)
yk−s dy

y

= I(1)
N (s; f )− a0

s
− ikb0

k− s
+ ikI(1)

N (k− s;g) .

�

This gives AC. For FE apply the same formula to IN(s;g).
For the converse, let Λ(s; f ) = Ns/2(2π)−sΓ(s) ·D f (s), Λ(s; f ) = Ns/2(2π)−sΓ(s) ·Dg(s) and

assume that these satisfy AC, FE. In PS6 we show that AC+FE make D f (s) be polynomially BVS
and hence Λ(s; f ) decays exponentially in vertical strips. It follows the integral

1
2πi

∫
ℜ(s)=α

Λ(s; f )(
√

Ny)−sds

converges absolutely if the line does not hit a pole, and for ℜ(α) large absolute convergence of the
Dirichlet series and Fourier expansion gives

f (iy) = a0 +
1

2πi

∫
ℜ(s)=α

Λ(s; f )(
√

Ny)−sds

since
1

2πi

∫
ℜ(s)=α

(2πny)−s
Γ(s)ds = e−2πny .

The exponential decay in vertical strips allows us to shift the contour to ℜ(s) = k−α and
conclude:

f (iy) = a0 +
1

2πi

∫
ℜ(s)=k−α

IN(s; f )(
√

Ny)−sds−a0 + ikb0(
√

Ny)−k

= ikb0(
√

Ny)−k +(
√

Ny)−k 1
2πi

∫
ℜ(s)=α

ikIN(s;g)(
√

Ny)−sds

= (−i
√

Ny)−kg(−1/iNy) .

Now g(z), f |kωN are holomorphic so equality on the imaginary axis implies equality everywhere.
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COROLLARY 157. k even. Then f (z) ∈Hk(1) iff I(s; f ) = (2π)−sΓ(s)D(s) has AC with poles

−a0
s −

(−1)k/2a0
k−s , and FE

I(s; f ) = (−1)k/2I(k− s; f ) .

5.3. Weil’s converse theorem

5.3.1. Twists. Let E : y2 = x3 + ax + b be an elliptic curve with integral coefficients. Recall
the definition ap(E) = p+1−#E(Fp) for primes of good reduction and the Hasse-Weil L-function

L(s;E) = ∏
p

(
1−ap p−s +1NE (p)p−2s)−1

where 1NE (p) =

{
p (p,NE) = 1
0 p | NE

. For p‖NE we have ap(E) = ±1 and for p2‖NE we have

ap(E) = 0.

THEOREM 158. (Modularity Theorem; W,TW,BCDT) There is a Hecke newform f ∈ S2(NE)
such that L(s;E) = L(s; f ). In particular, L(s;E) is nice.

For d squarefree and not divisible by 2,3 consider the elliptic curve

Ed : dy2 = x3 +ax+b

Note that E,Ed are isomorphic over Q(
√

d). What is ap(Ed)? If d is a square mod p, then Ed and
E are isomorphic over Fp. If d is not a square, then for every finite x ∈ Fp such that y 6= 0, exactly
one of (x3 +ax+b),d(x3 +ax+b) is a square. It follows that #E(Fp)+#Ed(Fp) = 2(p+1), that
is that ap(Ed) = −ap(E). We have concluded that ap(E) = χd(p)ap(E) where χd =

(d
·
)

is the
quadratic character mod d. In other words, if

L(s;E) = ∑
n≥1

an(E)n−s

then
L(s;Ed) = ∑

n≥1
an(E)χd(n)n−s .z

5.3.2. Direct thm with twists. Fix a primitive Dirichlet char ψ , conductor m = mψ .
Given the sequence {an} we set

fψ(z) = ∑
n≥1

anψ(n)e(nz)

Dψ(s) = ∑
n≥1

anψ(n)n−s

and set
IN(s; f ×ψ) def= INm2(s; fψ) = (2π/m

√
N)−s

Γ(s)Dψ(s) .

LEMMA 159. Let (m,N) = 1. Then TFAE
(1) Cψgψ̄ = fψ |kωNm2 .
(2) IN(s; f ×ψ) and IN(s;g× ψ̄) have AC (no poles) and the FE , decays exponentially

IN(s; f ×ψ) = ikCψ IN(k− s;g× ψ̄) .
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PROOF. Apply THM to fψ , Cψgψ̄ . �

LEMMA 160. f ∈Hk(N,χ). Then fψ ∈Hk(M,χψ2) where M = lcm
{

N,m2
ψ ,mψmχ

}
.

PROOF. Write m = mψ . Then fψ = G(ψ̄)−1
∑r(m) ψ̄(r) f |k

(
1 r/m

1

)
. Write u(x)=

(
1 x

1

)
.

Then u( b
m)−1Γ0(N)u( b

m)⊃ Γ(Nm2) so fψ ∈Hk(Γ(Nm2)). Now for γ =
(

a b
Mc d

)
note that

γ
′ = u(

r
m

)γu(−d2r
m

)

=
(

1 r/m
1

)(
a b

Mc d

)(
1 −d2r/m

1

)
=

(
a+ rMc/m b+dr/m

Mc d

)(
1 −d2r/m

1

)
=

(
a+ rMc/m b+dr/m(1−ad)− r2d2Mc/m2

Mc d−d2rcM/m

)
=

(
a+ rcM/m b− cdrM/m− r2d2cM/m2

Mc d−d2rcM/m

)
∈ Γ0(M)

And d′ ≡ d (mχ) so χ(γ ′) = χ(γ). Thus

f |ku(
r
m

)γ = χ(d) f |ku(
d2r
m

) .

Summing over r we find

fψ |kγ = ψ(d2)χ(d) fψ .

If f is a cusp form so are f |ku(r/m) and hence fψ . �

PROPOSITION 161. f ∈Hk(N,χ), ψ primitive of conductor m, (m,N) = 1. Then fψ |kωNm2 =
Cψgψ̄ where g = f |kωN and

(5.3.1) Cψ = χ(m)ψ(−N)
G(ψ)
G(ψ̄)

= χ(m)ψ(−N)
G(ψ)2

m
.

PROOF. If nm−Nrs = 1 then u(r/m)ωNm2 = mωN

(
m −s
−rN n

)
u(s/m). �

COROLLARY 162. Let f ∈Sk(N,χ), ψ primitive of conductor m, (m,N) = 1. Then IN(s; f ×ψ)
is entire and satisfies the FE

IN(s; f ×ψ) = ikCψ IN(k− s; f |kωN× ψ̄) ,

with Cψ as in (5.3.1).
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5.3.3. Converse theorem. If (m,rN)= 1 let n,s such that mn−Nrs = 1 set γm,r =
(

m −r
−sN n

)
∈

Γ0(N). We have seen:
u(r/m)ωNm2 = mωNγm,ru(s/m) .

LEMMA 163. If f ,g satisfy AC, FE for all ψ mod m prime then

g|k [χ(m)− γ(m,r)]u(r/m)

is independent of r.

PROOF. ∑
m
r=1 ψ̄(s) f |kα(s/m)ωNm2 = χ(m)ψ(−N)∑

m
s=1 ψ(s)g|ku(s/m) .It follows that

∑
r(m)

ψ(r)g|k [χ(m)− γ(m,r)]u(r/m) = 0 .

It follows that the function g|k [χ(m)− γ(m,r)]u(r/m) is constant. �

LEMMA 164. Let (mn,N) = 1, let f ,g satisfy the conclusion of Corollary (162) for all charac-

ters mod m and n. Then for all γ =
(

m −s
−rN n

)
PROOF. Let γ ′ =

(
m s
rN n

)
.

g|k [χ(m)− γ]u(r/m) = g|k
[
χ(m)− γ

′]u(−r/m)

that is
g|k [χ(m)− γ] = g|k

[
χ(m)− γ

′]u(−2r/m)

Also, γ−1 =
(

n s
rN m

)
, γ ′−1 =

(
n −s
−rN m

)
satisfy

g|k
[
χ(n)− γ

′−1]= g|k
[
χ(n)− γ

−1]u(−2r/m) .

Since χ(nm)= 1, χ(n)−γ ′−1 =−χ(n)(χ(m)− γ ′)γ ′−1 so
[
χ(n)− γ−1]u(−2r/m)=−χ(n)(χ(m)− γ)γ−1u(−2r/m).

It follows that
g|k
[
χ(m)− γ

′]= g|k (χ(m)− γ)γ
−1u(−2r/m)γ ′

�

5.4. The Euler product

5.5. The Rankin-Selberg L-function

5.6. Modularity

The Modularity Theorem
Artin’s Conjecture

Langlands Conjectures
Serre’s conjecture

58



CHAPTER 6

Analytic bounds

6.1. Fourier coefficients

6.2. The circle problem
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CHAPTER 7

Topics

7.1. Hilbert modular forms

7.2. Siegel modular forms
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