Math 613: Problem set 4 (due 18/10/09)

The weight-k action

OPT For a field F let $\mathbb{P}^{1}(F)$ denote the set of 1-dimensional subspaces of F^{2} . Write $\begin{bmatrix} a \\ b \end{bmatrix}$ for the subspace generated by the vector $\begin{pmatrix} a \\ b \end{pmatrix} \in F^{2} \setminus \{0\}$. (a) Show that a set of representatives for $\mathbb{P}^{1}(F)$ is given by $\left\{ \begin{bmatrix} z \\ 1 \end{bmatrix} \right\}_{z \in F}$ togther with the "point at infinity" $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ which we can also denote $\begin{bmatrix} \infty \\ 1 \end{bmatrix}$. (b) Show that the action of $GL_{2}(F)$ on F^{2} induces an action on $\mathbb{P}^{1}(F)$, given in co-ordinates by $g\begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{az+b}{cz+d} \\ 1 \end{bmatrix}$ (don't forget the case $z = \infty$). — Let j(g,z) = cz + d so that $g\begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} g \cdot z \\ 1 \end{pmatrix} j(g,z)$. For f defined on $\mathbb{P}^{1}(F)$ set (formally) $(f|_{k}g)(z) = f(g \cdot z)j(g,z)^{-k}$. (c) Show that $j(g \cdot g', z) = j(g,g' \cdot z)j(g',z)$. (d) Show that $f \mapsto f|_{k}g$ is a right action of $SL_{2}(F)$. (e) Using det $\begin{pmatrix} z+dz & z \\ 1 & 1 \end{pmatrix} = dz$ show that $d(gz) = \frac{1}{j(g,z)^{2}}dz$ as formal differentials on $\mathbb{P}^{1}(F)$.

2. (Linear independence) We now specialize to the case of $SL_2(\mathbb{R}) \to PGL_2(\mathbb{C})$ acting on $\mathbb{P}^1(\mathbb{C})$, where the action restricts to an action on \mathbb{H} .

- (a) Show that $j(g,z) \neq 0, \infty$ for $g \in SL_2(\mathbb{R}), z \in \mathbb{H}$, so that the formal calculation of part 1 applies here.
- (b) Show that j(g,z) = j(g',z) as functions iff $g'g^{-1} \in P$.
- (c) Let Γ < SL₂(ℝ) be a discrete subgroup and assume that Γ_∞ = Γ ∩ P is of infinite index in Γ. Find {γ_m}_{m=1}[∞] ⊂ Γ such that {j(γ_m,z)} are distinct functions.
- (d) Choose $f_k \in \Omega_k(\Gamma)$ for each k (such that all but finitely many are zero) and assume that $\sum_k f_k = 0$. Show that for each m we have $\sum_k j(\gamma_m, z)^k f_k(z) = 0$.
- (e) Show that for *m* large enough the system of linear equations above for f_k is invertible, and conclude that each $f_k = 0$.
- (f) Conclude that the sum $\sum_k \Omega_k(\Gamma)(\Gamma)$ is direct.

More on cusps

- 3. Let Γ be a Fuchsian group of the first kind, $X_{\Gamma} = \Gamma \setminus \mathbb{H}^*$ its associated closed Riemann surface, \mathcal{F}_{D} a Dirichlet fundamental domain. Fix the element $T = \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \in PSL_2(\mathbb{R})$.
 - (a) Let $\xi, \eta \in \partial \mathbb{H}$ be two vertices at infinity of *cFD*. Show that they are Γ -inequivalent. *Hint*: Wlg $\xi = \infty$, and assume $\gamma \eta = \xi$. Show that there are $w \in \mathcal{F}_{D}^{\circ}$ is close enough to η and $\delta \in \Gamma_{\xi}$ such that $\delta \gamma w \in \mathcal{F}_{D}^{\circ}$.

- Conclude that the vertices at infinity $\{\xi_k\}_{k=1}^K$ of \mathcal{F}_D are representatives for the Γ -equivalence classes of cusps of Γ .
- (b) For each *k* let $\sigma_k \in SL_2(\mathbb{R})$ be such that $\sigma_k \infty = \xi_k$. Show that $\sigma_k^{-1} \mathcal{F}_D \cap \{y(z) > Y\}$ is a vertical strip $[x_0, x_0 + h] \times (Y, \infty)$ for *Y* large enough. *Hint*: Consider the two sides meeting at the vertex ξ_k .
- OPT Show that we can choose σ_k such that $\sigma_k^{-1}\mathcal{F}_D \cap \{y(z) > Y\} = \left[-\frac{1}{2}, \frac{1}{2}\right] \times (Y, \infty)$ and that in that case the image of $\sigma_k^{-1}\Gamma_{\xi_k}\sigma_k$ in PSL₂(\mathbb{R}) is the group generated by *T*.
- (d) Set $\mathcal{F}_{k,Y} = \sigma_k \left[-\frac{1}{2}, \frac{1}{2} \right] \times (Y, \infty)$ and $\mathcal{F}_Y = \mathcal{F}_D \setminus \bigcup_k \mathcal{F}_{k,Y}$. Show that for *Y* large the $\mathcal{F}_{k,Y}$ are disjoint and \mathcal{F}_Y is compact.
- 4. The *invariant height* on $\Gamma \setminus \mathbb{H}$ is defined by

$$y_{\Gamma}(z) = \max_{k} \max_{\gamma \in \Gamma} y\left(\sigma_k \gamma z\right).$$

- (a) Show that $\max_{\gamma \in \Gamma} y(\sigma_k \gamma z)$ is finite and continuous. *Hint:* By problem set 3, problem 8(c) the set of *y*-values is discrete and bounded above.
- (b) Show that y_{Γ} is a continuous Γ -invariant function on *HH*. Show that $y_{\Gamma}(z_n) \to \infty$ if z_n approach a cusp.
- (c) Show that {z ∈ Γ\ℍ | y_Γ(z) ≤ Y} is compact, and that if y_Γ(z_n) → ∞ then there is a subsequence which converges to a cusp. *Hint*: The first part is variant of 3(d).
- 5. Let $f \in \mathcal{A}_0(\Gamma) = \mathbb{C}(X_{\Gamma})$ be a meromorphic function on X_{Γ} .
 - (a) Show that for Y large enough f has no zeroes or poles in the region $y_{\Gamma}(z) > Y$.
 - Assume now that *Y* is also large enough for 3(d) to hold. Let C_Y be the contour that goes along the boundary of \mathcal{F}_D except that at each cusps one truncates the cusp along the curve $y_{\Gamma} = Y$, and write $C_Y = C_0 \bigcup \bigcup_k C_k$ where $C_0 = C_Y \cap \partial \mathcal{F}_D$ and C_k is the closed horocycle at the *k*th cusp.
 - (b) Show that $\frac{1}{2\pi i} \oint_{C_0} \frac{f'}{f} dz = 0$ using the side-pairings and the invariance of y_{Γ} .
 - (c) Evaluate $\frac{1}{2\pi i} \int_{C_k} \frac{f'}{f} dz$ in terms of the behaviour of f at ξ_k by mapping the cusp neighbourhood to a punctured disk.
 - (d) Since $\frac{1}{2\pi i} \oint_{C_Y} \frac{f'}{f} dz$ counts the zeroes and poles in \mathcal{F}_Y , show that f has the same number of zeroes and poles in X_{Γ} .
- 6. $X(1) = \Gamma(1) \setminus \mathbb{H}^*$. We have seen in class that $j: X(1) \to \mathbb{P}^1(\mathbb{C})$ is a biholomorphism. In particular, all values are simple.
 - (a) Let $f \in \mathcal{A}_0(\Gamma(1))$ be non-constant. Construct $g \in \mathbb{C}(j)$ such that f, g have the same zeroes and poles in Y(1).

Hint: $j(z) - j(z_0)$ has a simple zero at z_0 , a pole at the cusp, and no other zeroes or poles.

- (b) Show that $\frac{f}{g}$ has no zeroes or poles in Y(1), and conclude that it has no zeroes or poles in X(1).
- (c) Applying the maximum principle show that $\frac{f}{g}$ is constant and conclude that $\mathbb{C}(X(1)) = \mathcal{A}_0(\Gamma(1)) = \mathbb{C}(j)$.

On the choice of σ_{ξ}

- 7. Let Γ be a Fuchsian group with a cusp ξ , and let $\sigma, \sigma' \in SL_2(\mathbb{R})$ such that $\sigma \infty = \sigma' \infty = \xi$. Let $f \in \Omega_k(\Gamma)$.
 - (a) Show in the definition of f being meromorphic/holomorphic/vanishing at ξ using σ or σ' would not change the conclusion.
 - (b) Assume that f is meromorphic at ξ or holomorphic on \mathbb{H} . In either case show that the Fourier expansion of f at ξ is essentially independent of the choice σ or σ' . Is the expansion truly independent of the choice?

The cusps of congruence subgroups

- 8. Let Γ be a Fuchsian group, and let Γ' be a subgroup of finite index.
 - (a) Show that Γ and Γ' have the same cusps.
 - (b) Let ξ be a cusp of Γ . Show that the Γ' -equivalence classes of cusps which are Γ -equivalent of ξ are in bijection with the double coset space $\Gamma' \setminus \Gamma / \Gamma_{\xi}$.
 - (c) Let $\Gamma_N < \Gamma'$ be normal in Γ , and write bars for the image in the quotient group $\overline{\Gamma} = \Gamma_N \setminus \Gamma$. Show that the map $\Gamma \to \overline{\Gamma}$ induces a bijection $\Gamma' \setminus \Gamma_N / \Gamma_{\xi} \to \overline{\Gamma'} \setminus \overline{\Gamma} / \overline{\Gamma_{\xi}}$.
- 9. Let $\Gamma(1) = SL_2(\mathbb{Z})$ and recall its subgroups $\Gamma(N) < \Gamma_0(N) < \Gamma_1(N)$ from Problem set 3.
 - (a) Show that the cusps of $\Gamma(1)$ are precisely $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\} \subset \mathbb{R} \cup \{\infty\} = \partial \mathbb{H}$, and that $\Gamma(1)$ acts transitively there.
 - Let $\Gamma_{\infty} = \Gamma(1)_{i\infty}$ and let $\Gamma_{\infty}^+ = \langle T \rangle$ where T is the translation.
 - (b) Let $\overline{\Gamma} = \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$. Show that the map $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (c,d)$ induces a bijection between $\overline{\Gamma}/\overline{\Gamma_{\infty}^+}$ and the set of elements of order N in $(\mathbb{Z}/N\mathbb{Z})^2$. *Hint*: This was already done in PS3.
 - (b) Show that $X_0(N) = X_{\Gamma_0(N)}$ has $\sum_{d|N} \phi((d, N/d))$ cusps. In particular, for *p* prime $X_0(p)$ has two cusps in this case find representatives.

OPT Count the cusps of $X(N) = X_{\Gamma(N)}$ and $X_1(N) = X_{\Gamma_1(N)}$.

Dirichlet characters

Let $N \ge 1$. A *Dirichlet character mod* N is a non-zero function $\chi : \mathbb{Z} \to \mathbb{C}$ such that $\chi(ab) = \chi(a)\chi(b), \chi(a) = \chi(b)$ if $a \equiv b(N)$ and $\chi(a) = 0$ whenever (a, N) > 1. We freely identify χ with the function it induces on $\mathbb{Z}/N\mathbb{Z}$

OPT. Let χ be a Dirichlet character mod *N*.

- (a) Show that $\chi(1) = 1$ and that χ is non-zero in $(\mathbb{Z}/N\mathbb{Z})^{\times}$.
- (b) Show that the non-zero values taken by χ are roots of unity.
- (c) Let N|M. Show that the function $\chi_M(a) = \begin{cases} \chi(a) & (a,M) = 1\\ 0 & (a,M) > 1 \end{cases}$ is a Dirichlet character mod M satisfying $\chi_M(a+kN) = \chi_M(a)$ for all $k \in \mathbb{Z}$. Characters mod M obtained this way

with N < M are called *imprimitive*. Other characters are called *primitive*.

(d) Assume that $\chi_M = \psi_M$ for another character $\psi \mod N$. Show that $\chi = \psi$.