
Math 613: Problem set 4 (due 18/10/09)

The weight-k action

OPT For a field F let P1(F) denote the set of 1-dimensional subspaces of F2. Write
[

a
b

]
for the

subspace generated by the vector
(

a
b

)
∈ F2 \{0}.

(a) Show that a set of representatives for P1(F) is given by
{[

z
1

]}
z∈F

togther with the

“point at infinity”
[

1
0

]
which we can also denote

[
∞

1

]
.

(b) Show that the action of GL2(F) on F2 induces an action on P1(F), given in co-ordinates

by g
[

z
1

]
=
[ az+b

cz+d
1

]
(don’t forget the case z = ∞).

— Let j(g,z) = cz + d so that g
(

z
1

)
=
(

g · z
1

)
j(g,z). For f defined on P1(F) set (for-

mally) ( f |kg)(z) = f (g · z) j(g,z)−k.
(c) Show that j(g ·g′,z) = j(g,g′ · z) j(g′,z).
(d) Show that f 7→ f |kg is a right action of SL2(F).

(e) Using det
(

z+dz z
1 1

)
= dz show that d(gz) = 1

j(g,z)2 dz as formal differentials on P1(F).

2. (Linear independence) We now specialize to the case of SL2(R)→ PGL2(C) acting on P1(C),
where the action restricts to an action on H.
(a) Show that j(g,z) 6= 0,∞ for g ∈ SL2(R), z ∈ H, so that the formal calculation of part 1

applies here.
(b) Show that j(g,z) = j(g′,z) as functions iff g′g−1 ∈ P.
(c) Let Γ < SL2(R) be a discrete subgroup and assume that Γ∞ = Γ∩P is of infinite index in

Γ. Find {γm}∞

m=1 ⊂ Γ such that { j(γm,z)} are distinct functions.
(d) Choose fk ∈ Ωk(Γ) for each k (such that all but finitely many are zero) and assume that

∑k fk = 0. Show that for each m we have ∑k j(γm,z)k fk(z) = 0.
(e) Show that for m large enough the system of linear equations above for fk is invertible, and

conclude that each fk = 0.
(f) Conclude that the sum ∑k Ωk(Γ)(Γ) is direct.

More on cusps

3. Let Γ be a Fuchsian group of the first kind, XΓ = Γ\H∗ its associated closed Riemann surface,

FD a Dirichlet fundamental domain. Fix the element T =
(

1 1
1

)
∈ PSL2(R).

(a) Let ξ ,η ∈ ∂H be two vertices at infinity of cFD. Show that they are Γ-inequivalent.
Hint: Wlg ξ = ∞, and assume γη = ξ . Show that there are w ∈ F◦D is close enough to η

and δ ∈ Γξ such that δγw ∈ F◦D.
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— Conclude that the vertices at infinity {ξk}K
k=1 ofFD are representatives for the Γ−equivalence

classes of cusps of Γ.
(b) For each k let σk ∈ SL2(R) be such that σk∞ = ξk. Show that σ

−1
k FD ∩{y(z) > Y} is a

vertical strip [x0,x0 +h]× (Y,∞) for Y large enough.
Hint: Consider the two sides meeting at the vertex ξk.

OPT Show that we can choose σk such that σ
−1
k FD∩{y(z) > Y}=

[
−1

2 , 1
2

]
× (Y,∞) and that

in that case the image of σ
−1
k Γξk

σk in PSL2(R) is the group generated by T .
(d) Set Fk,Y = σk

[
−1

2 , 1
2

]
× (Y,∞) and FY = FD \

⋃
kFk,Y . Show that for Y large the Fk,Y are

disjoint and FY is compact.

4. The invariant height on Γ\H is defined by

yΓ(z) = max
k

max
γ∈Γ

y(σkγz) .

(a) Show that maxγ∈Γ y(σkγz) is finite and continuous.
Hint: By problem set 3, problem 8(c) the set of y-values is discrete and bounded above.

(b) Show that yΓ is a continous Γ-invariant function on HH. Show that yΓ(zn)→ ∞ if zn
approach a cusp.

(c) Show that {z ∈ Γ\H | yΓ(z)≤ Y} is compact, and that if yΓ(zn)→∞ then there is a subse-
quence which converges to a cusp.
Hint: The first part is variant of 3(d).

5. Let f ∈ A0(Γ) = C(XΓ) be a meromorphic function on XΓ.
(a) Show that for Y large enough f has no zeroes or poles in the region yΓ(z) > Y .
— Assume now that Y is also large enough for 3(d) to hold. Let CY be the contour that goes

along the boundary of FD except that at each cusps one truncates the cusp along the curve
yΓ = Y , and write CY = C0

⋃
∪kCk where C0 = CY ∩∂FD and Ck is the closed horocycle at

the kth cusp.
(b) Show that 1

2πi
∮

C0

f ′
f dz = 0 using the side-pairings and the invariance of yΓ.

(c) Evaluate 1
2πi
∫

Ck

f ′
f dz in terms of the behaviour of f at ξk by mapping the cusp neighbour-

hood to a punctured disk.
(d) Since 1

2πi
∮

CY

f ′
f dz counts the zeroes and poles in FY , show that f has the same number of

zeroes and poles in XΓ.

6. X(1) = Γ(1)\H∗. We have seen in class that j : X(1)→ P1(C) is a biholomorphism. In
particular, all values are simple.
(a) Let f ∈A0(Γ(1)) be non-constant. Construct g∈C( j) such that f ,g have the same zeroes

and poles in Y (1).
Hint: j(z)− j(z0) has a simple zero at z0, a pole at the cusp, and no other zeroes or poles.

(b) Show that f
g has no zeroes or poles in Y (1), and conclude that it has no zeroes or poles in

X(1).
(c) Applying the maximum principle show that f

g is constant and conclude that C(X(1)) =
A0(Γ(1)) = C( j).
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On the choice of σξ

7. Let Γ be a Fuchsian group with a cusp ξ , and let σ ,σ ′ ∈ SL2(R) such that σ∞ = σ ′∞ = ξ .
Let f ∈Ωk(Γ).
(a) Show in the definition of f being meromorphic/holomorphic/vanishing at ξ using σ or σ ′

would not change the conclusion.
(b) Assume that f is meromorphic at ξ or holomorphic on H. In either case show that the

Fourier expansion of f at ξ is essentially independent of the choice σ or σ ′. Is the expan-
sion truly independent of the choice?

The cusps of congruence subgroups

8. Let Γ be a Fuchsian group, and let Γ′ be a subgroup of finite index.
(a) Show that Γ and Γ′ have the same cusps.
(b) Let ξ be a cusp of Γ. Show that the Γ′-equivalence classes of cusps which are Γ-equivalent

of ξ are in bijection with the double coset space Γ′\Γ/Γξ .
(c) Let ΓN < Γ′ be normal in Γ, and write bars for the image in the quotient group Γ̄ = ΓN\Γ.

Show that the map Γ→ Γ̄ induces a bijection Γ′\ΓN/Γξ → Γ′\Γ̄/Γξ .

9. Let Γ(1) = SL2(Z) and recall its subgroups Γ(N) < Γ0(N) < Γ1(N) from Problem set 3.
(a) Show that the cusps of Γ(1) are precisely P1(Q) = Q∪{∞} ⊂ R∪{∞} = ∂H, and that

Γ(1) acts transitively there.
— Let Γ∞ = Γ(1)i∞ and let Γ+

∞ = 〈T 〉 where T is the translation.

(b) Let Γ̄ = SL2(Z/NZ). Show that the map
(

a b
c d

)
7→ (c,d) induces a bijection between

Γ/Γ+
∞ and the set of elements of order N in (Z/NZ)2.

Hint: This was already done in PS3.
(b) Show that X0(N) = XΓ0(N) has ∑d|N φ ((d,N/d)) cusps. In particular, for p prime X0(p)

has two cusps – in this case find representatives.
OPT Count the cusps of X(N) = XΓ(N) and X1(N) = XΓ1(N).

Dirichlet characters

Let N ≥ 1. A Dirichlet character mod N is a non-zero function χ : Z→ C such that χ(ab) =
χ(a)χ(b), χ(a) = χ(b) if a≡ b(N) and χ(a) = 0 whenever (a,N) > 1. We freely identify χ with
the function it induces on Z/NZ
OPT. Let χ be a Dirichlet character mod N.

(a) Show that χ(1) = 1 and that χ is non-zero in (Z/NZ)×.
(b) Show that the non-zero values taken by χ are roots of unity.

(c) Let N|M. Show that the function χM(a) =

{
χ(a) (a,M) = 1
0 (a,M) > 1

is a Dirichlet character

mod M satisfying χM(a+kN) = χM(a) for all k ∈Z. Characters mod M obtained this way
with N < M are called imprimitive. Other characters are called primitive.

(d) Assume that χM = ψM for another character ψ mod N. Show that χ = ψ .
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