Math 613: Problem set 4 (due 18/10/09)

The weight- k action

OPT For a field F let $\mathbb{P}^{1}(F)$ denote the set of 1-dimensional subspaces of F^{2}. Write $\left[\begin{array}{l}a \\ b\end{array}\right]$ for the subspace generated by the vector $\binom{a}{b} \in F^{2} \backslash\{0\}$.
(a) Show that a set of representatives for $\mathbb{P}^{1}(F)$ is given by $\left\{\left[\begin{array}{l}z \\ 1\end{array}\right]\right\}_{z \in F}$ togther with the "point at infinity" $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ which we can also denote $\left[\begin{array}{c}\infty \\ 1\end{array}\right]$.
(b) Show that the action of $\mathrm{GL}_{2}(F)$ on F^{2} induces an action on $\mathbb{P}^{1}(F)$, given in co-ordinates by $g\left[\begin{array}{l}z \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{a z+b}{c z+d} \\ 1\end{array}\right]$ (don't forget the case $z=\infty$).
— Let $j(g, z)=c z+d$ so that $g\binom{z}{1}=\binom{g \cdot z}{1} j(g, z)$. For f defined on $\mathbb{P}^{1}(F)$ set (formally) $\left(\left.f\right|_{k} g\right)(z)=f(g \cdot z) j(g, z)^{-k}$.
(c) Show that $j\left(g \cdot g^{\prime}, z\right)=j\left(g, g^{\prime} \cdot z\right) j\left(g^{\prime}, z\right)$.
(d) Show that $\left.f \mapsto f\right|_{k} g$ is a right action of $\mathrm{SL}_{2}(F)$.
(e) Using det $\left(\begin{array}{cc}z+d z & z \\ 1 & 1\end{array}\right)=d z$ show that $d(g z)=\frac{1}{j(g, z)^{2}} d z$ as formal differentials on $\mathbb{P}^{1}(F)$.
2. (Linear independence) We now specialize to the case of $\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathrm{PGL}_{2}(\mathbb{C})$ acting on $\mathbb{P}^{1}(\mathbb{C})$, where the action restricts to an action on \mathbb{H}.
(a) Show that $j(g, z) \neq 0, \infty$ for $g \in \mathrm{SL}_{2}(\mathbb{R}), z \in \mathbb{H}$, so that the formal calculation of part 1 applies here.
(b) Show that $j(g, z)=j\left(g^{\prime}, z\right)$ as functions iff $g^{\prime} g^{-1} \in P$.
(c) Let $\Gamma<\mathrm{SL}_{2}(\mathbb{R})$ be a discrete subgroup and assume that $\Gamma_{\infty}=\Gamma \cap P$ is of infinite index in Γ. Find $\left\{\gamma_{m}\right\}_{m=1}^{\infty} \subset \Gamma$ such that $\left\{j\left(\gamma_{m}, z\right)\right\}$ are distinct functions.
(d) Choose $f_{k} \in \Omega_{k}(\Gamma)$ for each k (such that all but finitely many are zero) and assume that $\sum_{k} f_{k}=0$. Show that for each m we have $\sum_{k} j\left(\gamma_{m}, z\right)^{k} f_{k}(z)=0$.
(e) Show that for m large enough the system of linear equations above for f_{k} is invertible, and conclude that each $f_{k}=0$.
(f) Conclude that the sum $\sum_{k} \Omega_{k}(\Gamma)(\Gamma)$ is direct.

More on cusps

3. Let Γ be a Fuchsian group of the first kind, $X_{\Gamma}=\Gamma \backslash \mathbb{H}^{*}$ its associated closed Riemann surface, \mathcal{F}_{D} a Dirichlet fundamental domain. Fix the element $T=\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{R})$.
(a) Let $\xi, \eta \in \partial \mathbb{H}$ be two vertices at infinity of $c F D$. Show that they are Γ-inequivalent.

Hint: $\mathrm{Wlg} \xi=\infty$, and assume $\gamma \eta=\xi$. Show that there are $w \in \mathcal{F}_{\mathrm{D}}^{\circ}$ is close enough to η and $\delta \in \Gamma_{\xi}$ such that $\delta \gamma w \in \mathcal{F}_{\mathrm{D}}^{\circ}$.

- Conclude that the vertices at infinity $\left\{\xi_{k}\right\}_{k=1}^{K}$ of \mathcal{F}_{D} are representatives for the Γ-equivalence classes of cusps of Γ.
(b) For each k let $\sigma_{k} \in \mathrm{SL}_{2}(\mathbb{R})$ be such that $\sigma_{k} \infty=\xi_{k}$. Show that $\sigma_{k}^{-1} \mathcal{F}_{\mathrm{D}} \cap\{y(z)>Y\}$ is a vertical strip $\left[x_{0}, x_{0}+h\right] \times(Y, \infty)$ for Y large enough.
Hint: Consider the two sides meeting at the vertex ξ_{k}.
OPT Show that we can choose σ_{k} such that $\sigma_{k}^{-1} \mathcal{F}_{\mathrm{D}} \cap\{y(z)>Y\}=\left[-\frac{1}{2}, \frac{1}{2}\right] \times(Y, \infty)$ and that in that case the image of $\sigma_{k}^{-1} \Gamma_{\xi_{k}} \sigma_{k}$ in $\mathrm{PSL}_{2}(\mathbb{R})$ is the group generated by T.
(d) Set $\mathcal{F}_{k, Y}=\sigma_{k}\left[-\frac{1}{2}, \frac{1}{2}\right] \times(Y, \infty)$ and $\mathcal{F}_{Y}=\mathcal{F}_{\mathrm{D}} \backslash \bigcup_{k} \mathcal{F}_{k, Y}$. Show that for Y large the $\mathcal{F}_{k, Y}$ are disjoint and \mathcal{F}_{Y} is compact.

4. The invariant height on $\Gamma \backslash \mathbb{H}$ is defined by

$$
y_{\Gamma}(z)=\max _{k} \max _{\gamma \in \Gamma} y\left(\sigma_{k} \gamma z\right) .
$$

(a) Show that $\max _{\gamma \in \Gamma} y\left(\sigma_{k} \gamma z\right)$ is finite and continuous.

Hint: By problem set 3, problem 8(c) the set of y-values is discrete and bounded above.
(b) Show that y_{Γ} is a continous Γ-invariant function on $H H$. Show that $y_{\Gamma}\left(z_{n}\right) \rightarrow \infty$ if z_{n} approach a cusp.
(c) Show that $\left\{z \in \Gamma \backslash \mathbb{H} \mid y_{\Gamma}(z) \leq Y\right\}$ is compact, and that if $y_{\Gamma}\left(z_{n}\right) \rightarrow \infty$ then there is a subsequence which converges to a cusp.
Hint: The first part is variant of 3 (d).
5. Let $f \in \mathcal{A}_{0}(\Gamma)=\mathbb{C}\left(X_{\Gamma}\right)$ be a meromorphic function on X_{Γ}.
(a) Show that for Y large enough f has no zeroes or poles in the region $y_{\Gamma}(z)>Y$.

- Assume now that Y is also large enough for 3(d) to hold. Let C_{Y} be the contour that goes along the boundary of \mathcal{F}_{D} except that at each cusps one truncates the cusp along the curve $y_{\Gamma}=Y$, and write $C_{Y}=C_{0} \cup \cup_{k} C_{k}$ where $C_{0}=C_{Y} \cap \partial \mathcal{F}_{\mathrm{D}}$ and C_{k} is the closed horocycle at the k th cusp.
(b) Show that $\frac{1}{2 \pi i} \oint_{C_{0}} \frac{f^{\prime}}{f} d z=0$ using the side-pairings and the invariance of y_{Γ}.
(c) Evaluate $\frac{1}{2 \pi i} \int_{C_{k}} \frac{f^{\prime}}{f} d z$ in terms of the behaviour of f at ξ_{k} by mapping the cusp neighbourhood to a punctured disk.
(d) Since $\frac{1}{2 \pi i} \oint_{C_{Y}} \frac{f^{\prime}}{f} d z$ counts the zeroes and poles in \mathcal{F}_{Y}, show that f has the same number of zeroes and poles in X_{Γ}.

6. $\quad X(1)=\Gamma(1) \backslash \mathbb{H}^{*}$. We have seen in class that $j: X(1) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a biholomorphism. In particular, all values are simple.
(a) Let $f \in \mathcal{A}_{0}(\Gamma(1))$ be non-constant. Construct $g \in \mathbb{C}(j)$ such that f, g have the same zeroes and poles in $Y(1)$.
Hint: $j(z)-j\left(z_{0}\right)$ has a simple zero at z_{0}, a pole at the cusp, and no other zeroes or poles.
(b) Show that $\frac{f}{g}$ has no zeroes or poles in $Y(1)$, and conclude that it has no zeroes or poles in $X(1)$.
(c) Applying the maximum principle show that $\frac{f}{g}$ is constant and conclude that $\mathbb{C}(X(1))=$ $\mathcal{A}_{0}(\Gamma(1))=\mathbb{C}(j)$.

On the choice of σ_{ξ}

7. Let Γ be a Fuchsian group with a cusp ξ, and let $\sigma, \sigma^{\prime} \in \mathrm{SL}_{2}(\mathbb{R})$ such that $\sigma \infty=\sigma^{\prime} \infty=\xi$. Let $f \in \Omega_{k}(\Gamma)$.
(a) Show in the definition of f being meromorphic/holomorphic/vanishing at ξ using σ or σ^{\prime} would not change the conclusion.
(b) Assume that f is meromorphic at ξ or holomorphic on \mathbb{H}. In either case show that the Fourier expansion of f at ξ is essentially independent of the choice σ or σ^{\prime}. Is the expansion truly independent of the choice?

The cusps of congruence subgroups

8. Let Γ be a Fuchsian group, and let Γ^{\prime} be a subgroup of finite index.
(a) Show that Γ and Γ^{\prime} have the same cusps.
(b) Let ξ be a cusp of Γ. Show that the Γ^{\prime}-equivalence classes of cusps which are Γ-equivalent of ξ are in bijection with the double coset space $\Gamma^{\prime} \backslash \Gamma / \Gamma_{\xi}$.
(c) Let $\Gamma_{N}<\Gamma^{\prime}$ be normal in Γ, and write bars for the image in the quotient group $\bar{\Gamma}=\Gamma_{N} \backslash \Gamma$. Show that the map $\Gamma \rightarrow \bar{\Gamma}$ induces a bijection $\Gamma^{\prime} \backslash \Gamma_{N} / \Gamma_{\xi} \rightarrow \overline{\Gamma^{\prime}} \backslash \bar{\Gamma} / \overline{\Gamma_{\xi}}$.
9. Let $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$ and recall its subgroups $\Gamma(N)<\Gamma_{0}(N)<\Gamma_{1}(N)$ from Problem set 3 .
(a) Show that the cusps of $\Gamma(1)$ are precisely $\mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q} \cup\{\infty\} \subset \mathbb{R} \cup\{\infty\}=\partial \mathbb{H}$, and that $\Gamma(1)$ acts transitively there.

- Let $\Gamma_{\infty}=\Gamma(1)_{i \infty}$ and let $\Gamma_{\infty}^{+}=\langle T\rangle$ where T is the translation.
(b) Let $\bar{\Gamma}=\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$. Show that the map $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto(c, d)$ induces a bijection between $\bar{\Gamma} / \overline{\Gamma_{\infty}^{+}}$and the set of elements of order N in $(\mathbb{Z} / N \mathbb{Z})^{2}$.
Hint: This was already done in PS3.
(b) Show that $X_{0}(N)=X_{\Gamma_{0}(N)}$ has $\sum_{d \mid N} \phi((d, N / d))$ cusps. In particular, for p prime $X_{0}(p)$ has two cusps - in this case find representatives.
OPT Count the cusps of $X(N)=X_{\Gamma(N)}$ and $X_{1}(N)=X_{\Gamma_{1}(N)}$.

Dirichlet characters

Let $N \geq 1$. A Dirichlet character $\bmod N$ is a non-zero function $\chi: \mathbb{Z} \rightarrow \mathbb{C}$ such that $\chi(a b)=$ $\chi(a) \chi(b), \chi(a)=\chi(b)$ if $a \equiv b(N)$ and $\chi(a)=0$ whenever $(a, N)>1$. We freely identify χ with the function it induces on $\mathbb{Z} / N \mathbb{Z}$
OPT. Let χ be a Dirichlet character $\bmod N$.
(a) Show that $\chi(1)=1$ and that χ is non-zero in $(\mathbb{Z} / N \mathbb{Z})^{\times}$.
(b) Show that the non-zero values taken by χ are roots of unity.
(c) Let $N \mid M$. Show that the function $\chi_{M}(a)=\left\{\begin{array}{ll}\chi(a) & (a, M)=1 \\ 0 & (a, M)>1\end{array}\right.$ is a Dirichlet character $\bmod M$ satisfying $\chi_{M}(a+k N)=\chi_{M}(a)$ for all $k \in \mathbb{Z}$. Characters $\bmod M$ obtained this way with $N<M$ are called imprimitive. Other characters are called primitive.
(d) Assume that $\chi_{M}=\psi_{M}$ for another character $\psi \bmod N$. Show that $\chi=\psi$.

