Math 613: Problem set 2 (due 22/9/09)

Let *V* be an *n*-dimensional inner product space, and fix a lattice $\Lambda < \mathbb{R}^n$ with basis $\{v_j\}_{j=1}^n$. Write $\mathbb{T} = V/\Lambda$ for the quotient torus, a compact space.

Integration on \mathbb{T}

DEFINITION. A *fundamental domain* for Λ is a closed subset $\mathcal{F} \subset V$ such that:

- (1) $\cup_{v \in \Lambda} (v + \mathcal{F}) = V$, that is \mathcal{F} intersects every orbit and surjects on \mathbb{T} .
- (2) There is an open set \mathcal{F}° which injects into \mathbb{T} and such that $\mathcal{F} = \overline{\mathcal{F}^{\circ}}$.
- (3) The difference set $\mathcal{F} \setminus \mathcal{F}^{\circ}$ has measure zero.
- 1. Show that $\mathcal{F}_{\frac{1}{2}} = \left\{ \sum_{j=1}^{n} a_j v_j \mid |a_j| \le \frac{1}{2} \right\}$ and $\mathcal{F}_1 = \left\{ \sum_{j=1}^{n} a_j v_j \mid 0 \le a_j \le 1 \right\}$ are fundamental domains.
- *2. (The Dirichlet domain) Fix $x_0 \in V$ and set

$$\mathcal{F}_{\rm D} = \{ x \in V \mid \forall v \in \Lambda : \|x - x_0\| \le \|x - (x_0 + v)\| \}.$$

- (a) Show that \$\mathcal{F}_D\$ is closed and surjects on \$\mathbb{T}\$.
 Hint: Write it as an intersection of closed half-spaces.
- (b) Show that \mathcal{F}_D is bounded. *Hint*: Show that $\mathcal{F}_D \subset B(x_0, 2\operatorname{diam}(\mathcal{F}_1))$.
- (c) Show that \mathcal{F}_D is the intersection of finitely many closed half-spaces.
- (d) Let \mathcal{F}_D° be the intersection of the interiors of these half-spaces and show that \mathcal{F}_D is a fundamental domain.
- 3. (Lattice averaging) A function $f \in C(V)$ is said to be *of rapid decay* if for all $N \ge 1$ the function $(1 + ||x||)^N f(x)$ is bounded. $f \in C^{\infty}(V)$ is said to be of *Schwartz class* if it and all its derivatives are of rapid decay (the set of such functions is denoted S(V)).
 - (a) Let *f* be of rapid decay. Show that for all $x \in V$, $(\Pi_{\Lambda} f)(x) \stackrel{\text{def}}{=} \sum_{v \in \Lambda} f(x+v)$ converges and defines a continuous function on \mathbb{T} .
 - OPT Let $f \in \mathcal{S}(V)$. Show that $\Pi_{\Lambda} f$ is smooth.
 - (b) (Smooth fundamental domain) Let $\chi_0 \in C_c^{\infty}(V)$ be non-negative and satisfy $\chi_0 \upharpoonright_{\mathcal{F}} \equiv 1$ for some compact fundamental domain \mathcal{F} . Show that $\chi(x) = \frac{\chi_0(x)}{(\Pi_\Lambda \chi_0)(x)} \in C_c^{\infty}(V)$ and that we have $\Pi_\Lambda \chi \equiv 1$.
- *4. (Integration on \mathbb{T}) dx will denote the Lebesgue measure on V. For $f \in C(\mathbb{T})$ define $\int_{\mathbb{T}} f(\bar{x}) d\bar{x} = \int_{V} f(x) \chi(x) dx$.
 - (a) Show that the integral on the RHS defines a linear map $C(\mathbb{T}) \to \mathbb{C}$ mapping non-negative functions to non-negative reals.
 - (b) Show that for any fundamental domain \mathcal{F}' for Λ we have

$$\int_{\mathcal{F}'} f(x) dx = \int_V f \boldsymbol{\chi} \,.$$

(c) Conclude that the measure $d\bar{x}$ on \mathbb{T} is translation-invariant.

- (d) Show that the volume of \mathbb{T} is the absolute value of the determinant of the matrix A such that a_{ij} is the *i*th co-ordinate of v_j in an orthonormal basis of V. Conclude that $(vol(\mathbb{T}))^2$ is the determinant of the *Gram matrix*, whose *ij*th entry is $\langle v_i, v_j \rangle$. *Hint:* Use one of the fundamental domains of problem 1.
- 5. Let *V* be an *n*-dimensional real vector space, *V*^{*} the dual space. Let $\Lambda < V$ be a lattice, and set $\Lambda^* = \{v^* \in V^* \mid v^*(\Lambda) \subset \mathbb{Z}\}.$
 - (a) Show that Λ^* is a lattice in V^* . *Hint*: Use the dual basis.
 - (b) Show that the standard isomorphism $V \simeq V^{**}$ identifies Λ with Λ^{**} .
 - (*c) If V is an inner product space show that $\operatorname{vol}(V/\Lambda)\operatorname{vol}(V^*/\Lambda^*) = 1$.

The Poisson Summation Formula

We will use the standard notation $e(z) = \exp(2\pi i z)$. For a short note on Fourier series and the Poisson Summation Formula see the course website.

- 6. Fix $k \ge 2$.
 - (a) Show that $\tau \mapsto \sum_{d \in \mathbb{Z}} \frac{1}{(\tau+d)^k}$ is holomorphic in $\mathbb{H} = \{x + iy \mid y > 0\}.$
 - (b) Show that

$$\int_{\mathbb{R}} \frac{e(-rx)}{(x+\tau)^k} dx = \begin{cases} \frac{(-2\pi i)^k}{(k-1)!} r^{k-1} e(r\tau) & r \ge 0\\ 0 & r \le 0 \end{cases}$$

- (c) Show that $\sum_{d \in \mathbb{Z}} \frac{1}{(\tau+d)^k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} e(m\tau)$.
- (d) Show that there exists C such that

$$\frac{1}{\tau} + \sum_{d \ge 1} \left(\frac{1}{\tau + d} + \frac{1}{\tau - d} \right) = C + (-2\pi i) \sum_{m=0}^{\infty} e(m\tau) = C - \frac{2\pi i}{1 - e(\tau)}.$$

Hint: After showing that both sides are differentiable, take their derivatives.

(e) Multiply by τ and use the Taylor expansion of both sides to show that $C = \pi i$ and that

$$1 - 2\sum_{k=1}^{\infty} \zeta(2k)\tau^{2k} = \pi i\tau \frac{e(\tau) + 1}{e(\tau) - 1}.$$

Hint: $\sum_{d\geq 1} \frac{1}{d^2} = \frac{\pi^2}{6}$.

(f) Show that for $k \ge 1$ even, $\zeta(k) = -\frac{1}{2} \frac{(2\pi i)^k}{k!} B_k$ where B_k are rational numbers. *Hint*: let $\frac{t}{2} \frac{e^t + 1}{e^t - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} t^k$.

7. let $\varphi(x) = \exp\left\{-\pi \alpha \|x\|^2\right\}$ on \mathbb{R}^n where $\Re(\alpha) > 0$.

- (a) Show that $\hat{\varphi}(k) = \alpha^{-n/2} \exp\left\{-\frac{\pi}{\alpha} \|k\|^2\right\}$ (take the branch of the square root defined on $\Re(\alpha) > 0$ such that $\sqrt{1} = 1$).
- (b) Conclude that $\theta(\tau) = \sum_{n \in \mathbb{Z}} e^{2\pi i n^2 \tau}$ satisfies $\theta(-\frac{1}{4\tau}) = \sqrt{-2i\tau}\theta(\tau)$

Continuing the Epstein Zetafunction

- 8. For $\varphi \in C^{\infty}(V)$ of Schwartz class set $\varphi(\Lambda) = \sum_{v \in \Lambda} \varphi(v)$ and $Z(\Lambda; \varphi; s) = \int_0^\infty \varphi(r\Lambda) r^{ns} \frac{dr}{r}$.
 - (a) Show that the sum converges absolutely.
 - (b) Show that as $r \to \infty$, $|\varphi|(r\Lambda)$ decays faster than any polynomial and that as $r \to 0$, $|\varphi|(r\Lambda) = O(r^{-n})$. Conclude that $Z(\Lambda;\varphi;s)$ converges absolutely in $\Re(s) > 1$ and defines a holomorphic function there.
 - (c) Applying the Poisson summation formula, show that for $\Re(s) > 1$,

$$Z(\Lambda;\varphi;s) = \int_1^\infty \varphi(r\Lambda) r^{ns} \frac{dr}{r} - \varphi(0) \frac{1}{ns} + \frac{1}{\operatorname{vol}(\Lambda)} \int_1^\infty \hat{\varphi}(r\Lambda^*) r^{n(1-s)} \frac{dr}{r} - \frac{\hat{\varphi}(0)}{\operatorname{vol}(\Lambda)} \frac{1}{n(1-s)} \frac{dr}{r} + \frac{1}{\operatorname{vol}(\Lambda)} \frac{dr}{r} + \frac{1}{\operatorname{vol}(\Lambda)$$

(d) Since $\varphi \in S(V)$ we also have $\hat{\varphi} \in S(V)$ and $\hat{\varphi}(x) = \varphi(-x)$. Conclude that $Z(\Lambda;\varphi;s)$ extends to a meromorphic function of *s* with poles at s = 0, 1 which satisfies the *functional equation*

$$\sqrt{\operatorname{vol}(\Lambda)}Z(\Lambda;\varphi;s) = \sqrt{\operatorname{vol}(\Lambda^*)}Z(\Lambda^*;\hat{\varphi};1-s)$$

(e) Assume that φ is spherical, and show that for $\Re(s) > 1$ we have

$$Z(\Lambda;\varphi;s) = \left(\int_0^\infty \varphi(r)r^{ns}\frac{dr}{r}\right)E(\Lambda;s)\,.$$

- (f) For $\varphi \in C_c^{\infty}(\mathbb{R}_{>0}^{\times})$, show that $\left(\int_0^{\infty} \varphi(r) r^{ns} \frac{dr}{r}\right)$ extends to an entire function; conclude that $E(\Lambda; s)$ extends to a meromorphic function of *s*.
- (g) For $\varphi(x) = \exp\left\{-\pi \|x\|^2\right\}$ show that $\varphi(x) = \hat{\varphi}(x)$ and that $\int_0^\infty \varphi(r) r^{ns} \frac{dr}{r} = 2\pi^{-ns/2} \Gamma(\frac{ns}{2}).$

Conclude that $E(\Lambda; s)$ has no poles other than s = 0, 1 and satisfies the functional equation

$$\sqrt{\operatorname{vol}(\Lambda)}\pi^{-\frac{n}{2}\left(\frac{1}{2}+s\right)}\Gamma(\frac{ns}{2})E(\Lambda;s) = \sqrt{\operatorname{vol}(\Lambda^*)}\pi^{-\frac{n}{2}\left(\frac{1}{2}-s\right)}\Gamma(\frac{n(1-s)}{2})E(\Lambda^*;1-s).$$

(h) Show from (c) that
$$\operatorname{Res}_{s=1} E(\Lambda; s) = \frac{\pi^{n/2}}{2\operatorname{vol}(\Lambda)\Gamma(\frac{n}{2})}$$
.

REMARK 50. We often write $vol(\Lambda)$ for the *covolume* $vol(V/\Lambda)$.