Math 613: Problem set 2 (due 22/9/09)

Let V be an n-dimensional inner product space, and fix a lattice $\Lambda<\mathbb{R}^{n}$ with basis $\left\{v_{j}\right\}_{j=1}^{n}$. Write $\mathbb{T}=V / \Lambda$ for the quotient torus, a compact space.

Integration on \mathbb{T}

Definition. A fundamental domain for Λ is a closed subset $\mathcal{F} \subset V$ such that:
(1) $\cup_{v \in \Lambda}(v+\mathcal{F})=V$, that is \mathcal{F} intersects every orbit and surjects on \mathbb{T}.
(2) There is an open set \mathcal{F}° which injects into \mathbb{T} and such that $\mathcal{F}=\overline{\mathcal{F}}$.
(3) The difference set $\mathcal{F} \backslash \mathcal{F}^{\circ}$ has measure zero.

1. Show that $\mathcal{F}_{\frac{1}{2}}=\left\{\sum_{j=1}^{n} a_{j} v_{j}| | a_{j} \left\lvert\, \leq \frac{1}{2}\right.\right\}$ and $\mathcal{F}_{1}=\left\{\sum_{j=1}^{n} a_{j} v_{j} \mid 0 \leq a_{j} \leq 1\right\}$ are fundamental domains.
*2. (The Dirichlet domain) Fix $x_{0} \in V$ and set

$$
\mathcal{F}_{\mathrm{D}}=\left\{x \in V \mid \forall v \in \Lambda:\left\|x-x_{0}\right\| \leq\left\|x-\left(x_{0}+v\right)\right\|\right\} .
$$

(a) Show that \mathcal{F}_{D} is closed and surjects on \mathbb{T}.

Hint: Write it as an intersection of closed half-spaces.
(b) Show that \mathcal{F}_{D} is bounded.

Hint: Show that $\mathcal{F}_{\mathrm{D}} \subset B\left(x_{0}, 2 \operatorname{diam}\left(\mathcal{F}_{1}\right)\right)$.
(c) Show that \mathcal{F}_{D} is the intersection of finitely many closed half-spaces.
(d) Let $\mathcal{F}_{\mathrm{D}}^{\circ}$ be the intersection of the interiors of these half-spaces and show that \mathcal{F}_{D} is a fundamental domain.
3. (Lattice averaging) A function $f \in C(V)$ is said to be of rapid decay if for all $N \geq 1$ the function $(1+\|x\|)^{N} f(x)$ is bounded. $f \in C^{\infty}(V)$ is said to be of Schwartz class if it and all its derivatives are of rapid decay (the set of such functions is denoted $\mathcal{S}(V)$).
(a) Let f be of rapid decay. Show that for all $x \in V,\left(\Pi_{\Lambda} f\right)(x) \stackrel{\text { def }}{=} \sum_{v \in \Lambda} f(x+v)$ converges and defines a continuous function on \mathbb{T}.
OPT Let $f \in \mathcal{S}(V)$. Show that $\Pi_{\Lambda} f$ is smooth.
(b) (Smooth fundamental domain) Let $\chi_{0} \in C_{\mathrm{c}}^{\infty}(V)$ be non-negative and satisfy $\chi_{0} \upharpoonright \mathcal{F} \equiv 1$ for some compact fundamental domain \mathcal{F}. Show that $\chi(x)=\frac{\chi_{0}(x)}{\left(\Pi_{\Lambda} \chi_{0}\right)(x)} \in C_{\mathrm{c}}^{\infty}(V)$ and that we have $\Pi_{\Lambda} \chi \equiv 1$.
*4. (Integration on $\mathbb{T}) d x$ will denote the Lebesgue measure on V. For $f \in C(\mathbb{T})$ define $\int_{\mathbb{T}} f(\bar{x}) d \bar{x}=$ $\int_{V} f(x) \chi(x) d x$.
(a) Show that the integral on the RHS defines a linear map $C(\mathbb{T}) \rightarrow \mathbb{C}$ mapping non-negative functions to non-negative reals.
(b) Show that for any fundamental domain \mathcal{F}^{\prime} for Λ we have

$$
\int_{\mathcal{F}^{\prime}} f(x) d x=\int_{V} f \chi
$$

(c) Conclude that the measure $d \bar{x}$ on \mathbb{T} is translation-invariant.
(d) Show that the volume of \mathbb{T} is the absolute value of the determinant of the matrix A such that $a_{i j}$ is the i th co-ordinate of v_{j} in an orthonormal basis of V. Conclude that $(\operatorname{vol}(\mathbb{T}))^{2}$ is the determinant of the Gram matrix, whose $i j$ th entry is $\left\langle v_{i}, v_{j}\right\rangle$.
Hint: Use one of the fundamental domains of problem 1.
5. Let V be an n-dimensional real vector space, V^{*} the dual space. Let $\Lambda<V$ be a lattice, and set $\Lambda^{*}=\left\{v^{*} \in V^{*} \mid v^{*}(\Lambda) \subset \mathbb{Z}\right\}$.
(a) Show that Λ^{*} is a lattice in V^{*}.

Hint: Use the dual basis.
(b) Show that the standard isomorphism $V \simeq V^{* *}$ identifies Λ with $\Lambda^{* *}$.
$(* \mathrm{c})$ If V is an inner product space show that $\operatorname{vol}(V / \Lambda) \operatorname{vol}\left(V^{*} / \Lambda^{*}\right)=1$.

The Poisson Summation Formula

We will use the standard notation $e(z)=\exp (2 \pi i z)$. For a short note on Fourier series and the Poisson Summation Formula see the course website.
6. Fix $k \geq 2$.
(a) Show that $\tau \mapsto \sum_{d \in \mathbb{Z}} \frac{1}{(\tau+d)^{k}}$ is holomorphic in $\mathbb{H}=\{x+i y \mid y>0\}$.
(b) Show that

$$
\int_{\mathbb{R}} \frac{e(-r x)}{(x+\tau)^{k}} d x= \begin{cases}\frac{(-2 \pi i)^{k}}{(k-1)!} r^{k-1} e(r \tau) & r \geq 0 \\ 0 & r \leq 0\end{cases}
$$

(c) Show that $\sum_{d \in \mathbb{Z}} \frac{1}{(\tau+d)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} e(m \tau)$.
(d) Show that there exists C such that

$$
\frac{1}{\tau}+\sum_{d \geq 1}\left(\frac{1}{\tau+d}+\frac{1}{\tau-d}\right)=C+(-2 \pi i) \sum_{m=0}^{\infty} e(m \tau)=C-\frac{2 \pi i}{1-e(\tau)} .
$$

Hint: After showing that both sides are differentiable, take their derivatives.
(e) Multiply by τ and use the Taylor expansion of both sides to show that $C=\pi i$ and that

$$
1-2 \sum_{k=1}^{\infty} \zeta(2 k) \tau^{2 k}=\pi i \tau \frac{e(\tau)+1}{e(\tau)-1}
$$

Hint: $\sum_{d \geq 1} \frac{1}{d^{2}}=\frac{\pi^{2}}{6}$.
(f) Show that for $k \geq 1$ even, $\zeta(k)=-\frac{1}{2} \frac{(2 \pi i)^{k}}{k!} B_{k}$ where B_{k} are rational numbers.

Hint: let $\frac{t}{2} \frac{e^{t}+1}{e^{t}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} t^{k}$.
7. let $\varphi(x)=\exp \left\{-\pi \alpha\|x\|^{2}\right\}$ on \mathbb{R}^{n} where $\mathfrak{R}(\alpha)>0$.
(a) Show that $\hat{\varphi}(k)=\alpha^{-n / 2} \exp \left\{-\frac{\pi}{\alpha}\|k\|^{2}\right\}$ (take the branch of the square root defined on $\Re(\alpha)>0$ such that $\sqrt{1}=1)$.
(b) Conclude that $\theta(\tau)=\sum_{n \in \mathbb{Z}} e^{2 \pi i n^{2} \tau}$ satisfies $\theta\left(-\frac{1}{4 \tau}\right)=\sqrt{-2 i \tau} \theta(\tau)$

Continuing the Epstein Zetafunction

8. For $\varphi \in C^{\infty}(V)$ of Schwartz class set $\varphi(\Lambda)=\sum_{v \in \Lambda}^{\prime} \varphi(v)$ and $Z(\Lambda ; \varphi ; s)=\int_{0}^{\infty} \varphi(r \Lambda) r^{n s} \frac{d r}{r}$.
(a) Show that the sum converges absolutely.
(b) Show that as $r \rightarrow \infty,|\varphi|(r \Lambda)$ decays faster than any polynomial and that as $r \rightarrow 0$, $|\varphi|(r \Lambda)=O\left(r^{-n}\right)$. Conclude that $Z(\Lambda ; \varphi ; s)$ converges absolutely in $\mathfrak{R}(s)>1$ and defines a holomorphic function there.
(c) Applying the Poisson summation formula, show that for $\mathfrak{R}(s)>1$,
$Z(\Lambda ; \varphi ; s)=\int_{1}^{\infty} \varphi(r \Lambda) r^{n s} \frac{d r}{r}-\varphi(0) \frac{1}{n s}+\frac{1}{\operatorname{vol}(\Lambda)} \int_{1}^{\infty} \hat{\varphi}\left(r \Lambda^{*}\right) r^{n(1-s)} \frac{d r}{r}-\frac{\hat{\varphi}(0)}{\operatorname{vol}(\Lambda)} \frac{1}{n(1-s)}$.
(d) Since $\varphi \in \mathcal{S}(V)$ we also have $\hat{\varphi} \in \mathcal{S}(V)$ and $\hat{\hat{\varphi}}(x)=\varphi(-x)$. Conclude that $Z(\Lambda ; \varphi ; s)$ extends to a meromorphic function of s with poles at $s=0,1$ which satisfies the functional equation

$$
\sqrt{\operatorname{vol}(\Lambda)} Z(\Lambda ; \varphi ; s)=\sqrt{\operatorname{vol}\left(\Lambda^{*}\right)} Z\left(\Lambda^{*} ; \hat{\varphi} ; 1-s\right)
$$

(e) Assume that φ is spherical, and show that for $\mathfrak{R}(s)>1$ we have

$$
Z(\Lambda ; \varphi ; s)=\left(\int_{0}^{\infty} \varphi(r) r^{n s} \frac{d r}{r}\right) E(\Lambda ; s)
$$

(f) For $\varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}_{>0}^{\times}\right)$, show that $\left(\int_{0}^{\infty} \varphi(r) r^{n s} \frac{d r}{r}\right)$ extends to an entire function; conclude that $E(\Lambda ; s)$ extends to a meromorphic function of s.
(g) For $\varphi(x)=\exp \left\{-\pi\|x\|^{2}\right\}$ show that $\varphi(x)=\hat{\varphi}(x)$ and that

$$
\int_{0}^{\infty} \varphi(r) r^{n s} \frac{d r}{r}=2 \pi^{-n s / 2} \Gamma\left(\frac{n s}{2}\right)
$$

Conclude that $E(\Lambda ; s)$ has no poles other than $s=0,1$ and satisfies the functional equation

$$
\sqrt{\operatorname{vol}(\Lambda)} \pi^{-\frac{n}{2}\left(\frac{1}{2}+s\right)} \Gamma\left(\frac{n s}{2}\right) E(\Lambda ; s)=\sqrt{\operatorname{vol}\left(\Lambda^{*}\right)} \pi^{-\frac{n}{2}\left(\frac{1}{2}-s\right)} \Gamma\left(\frac{n(1-s)}{2}\right) E\left(\Lambda^{*} ; 1-s\right)
$$

(h) Show from (c) that $\operatorname{Res}_{s=1} E(\Lambda ; s)=\frac{\pi^{n / 2}}{2 \operatorname{vol}(\Lambda) \Gamma\left(\frac{n}{2}\right)}$.

REMARK 50. We often write $\operatorname{vol}(\Lambda)$ for the covolume $\operatorname{vol}(V / \Lambda)$.

