Math 613: Problem set 1 (due 15/9/09)

Some number theory

1. For a commutative ring R write R^{\times}for the group of invertible elements, $\mathrm{GL}_{n}(R)$ for the group $\left\{g \in M_{n}(R) \mid \operatorname{det} g \in R^{\times}\right\}$, and $\operatorname{SL}_{n}(R)$ for $\left\{g \in M_{n}(R) \mid \operatorname{det} g=1\right\}$.
(a) Show that $\mathrm{GL}_{n}(\mathbb{Z}), \mathrm{GL}_{n}(\mathbb{Z} / N \mathbb{Z})$ are the automorphism groups of the additive groups of the rings \mathbb{Z}^{n}, $(\mathbb{Z} / N \mathbb{Z})^{n}$ respectively.
OPT Show that $\mathrm{GL}_{n}(R)$ is the automorphism group of the R-module R^{n}.
(b) Let N_{1}, N_{2} be relatively prime and let $N=N_{1} N_{2}$. Show that $\mathrm{GL}_{n}(\mathbb{Z} / N \mathbb{Z}) \simeq \operatorname{GL}_{n}\left(\mathbb{Z} / N_{1} \mathbb{Z}\right) \times$ $\mathrm{GL}_{n}\left(\mathbb{Z} / N_{2} \mathbb{Z}\right)$.
(c) Show that the maps $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})($ reduction $\bmod N)$ are surjective.

Hint: Given $\bar{\gamma} \in \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ choose a pre-image $\gamma \in M_{2}(\mathbb{Z})$ such that the entries in the bottom row of γ are relatively prime.
(d) Find the image of the map $\mathrm{GL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

Hint: What is \mathbb{Z}^{\times}?
OPT Do parts (c),(d) for $\mathrm{SL}_{n}, \mathrm{GL}_{n}$.
OPT Do parts (c),(d) replacing \mathbb{Z} with the ring of integers of a number field and N with an ideal in the ring of integers.
2. Let G be a group, H char G a characteristic subgroup. In other words, one such that for every automorphism $\sigma \in \operatorname{Aut}(G)$ we have $\sigma(H)=H$.
(a) Show $H \triangleleft G$.
(b) Show that there is a natural map $\operatorname{Aut}(G) \rightarrow \operatorname{Aut}(G / H)$.
*(c) Classify the orbits of $\operatorname{Aut}\left(\mathbb{Z}^{2}\right)$ on \mathbb{Z}^{2}.
(d) Find all chracteristic subgroups of \mathbb{Z}^{2}.

OPT Do parts (c),(d) in \mathbb{Z}^{n}.

Lattices in \mathbb{R}^{n}

3. (Construction) Let $\left\{v_{1}, \ldots, v_{k}\right\} \subset \mathbb{R}^{n}$ be linearly independent, let $\Lambda=\left\{\sum_{j=1}^{k} a_{j} v_{j} \mid \underline{a} \in \mathbb{Z}^{k}\right\} \subset$ \mathbb{R}^{n} be the subgroup they generate, and let \mathbb{R}^{n} / Λ be the quotient group, endowed with the quotient topology coming from the map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} / \Lambda$.
(a) Show that the map $\mathbb{Z}^{k} \rightarrow \Lambda$ given by $\underline{a} \rightarrow \sum_{j} a_{j} v_{j}$ is an isomorphism.
(b) Show that Λ is a discrete subset of \mathbb{R}^{n}.
(c) Given $x, y \in \mathbb{R}^{n}$ such that $\pi(x) \neq \pi(y)$ find open sets $U_{x}, U_{y} \subset \mathbb{R}^{n}$ containing x, y respectively such that $\pi\left(U_{x}\right) \cap \pi\left(U_{y}\right)=\emptyset$. You have shown that \mathbb{R}^{n} / Λ is Hausdorff.
Hint: Let $r=\min \{\|v\| \mid v \in \Lambda, v \neq 0\}$.
(d) Show that \mathbb{R}^{n} / Λ isn't compact if $k<n$.
(e) Let $k=n$, and let $\mathcal{F}=\left\{\sum_{j=1}^{k} a_{j} v_{j}\left|\forall j:\left|a_{j}\right| \leq \frac{1}{2}\right\}\right.$. Show that \mathcal{F} surjects onto \mathbb{R}^{n} / Λ and conclude that \mathbb{R}^{n} / Λ is compact.
HINT Applying an automorphism of \mathbb{R}^{n} before starting the problem will make your life much easier.
4. (Reduction theory) Let $\Lambda \subset \mathbb{R}^{n}$ be a discrete subgroup. Set $\Lambda_{0}=\{0\}, V_{0}=\{0\}$ and for $j \geq 1$ if $\Lambda \not \subset V_{j-1}$ choose $v_{j} \in \Lambda \backslash V_{j-1}$ minimizing the distance to V_{j-1}. Then set $\Lambda_{j}=\Lambda_{j-1}+\mathbb{Z} v_{j}$, $V_{j}=V_{j-1}+\mathbb{R} v_{j}$.
(a) Assume by induction that $\Lambda_{j-1}=\Lambda \cap V_{j-1}$ and that it is a lattice in V_{j-1}. Show that set of distances $\left\{d\left(v, V_{j-1}\right)\right\}_{v \in \Lambda}$ has a minimal non-zero member, so that v_{j} exists.
Hint: Consider first the set of distances $d\left(v, V_{j-1}\right)$ for vectors v whose orthogonal projection to V_{j-1} lies in $\mathcal{F}_{j-1}=\left\{\sum_{i=1}^{j-1} a_{i} v_{i}| | a_{i} \left\lvert\, \leq \frac{1}{2}\right.\right\}$.
(b) Show that $\Lambda_{j}=\Lambda \cap V_{j}$.
(c) Conclude that $\Lambda=\mathbb{Z} v_{1} \oplus \cdots \mathbb{Z} v_{j}$ for some $0 \leq j \leq n$.

Definition. Call $\Lambda<\mathbb{R}^{n}$ a lattice if it is discrete and if \mathbb{R}^{n} / Λ is compact.

Convergence Lemma

Write $B(R)$ for the closed ball of radius R in \mathbb{R}^{n}, c_{n} for the volume of $B(1)$ so that $\operatorname{vol}(B(R))=$ $c_{n} R^{n}$. Fix a lattice $\Lambda<\mathbb{R}^{n}$.
5. Show that there exist $V, C>0$ such that for any $R \geq 1$,

$$
\left|\#(\Lambda \cap B(R))-V R^{n}\right| \leq C R^{n-1}
$$

Hint: Consider the set $\bigcup_{v \in \Lambda \cap B(R)}(v+\mathcal{F})$, and prove the claim first for $R \geq 2 \operatorname{diam}(\mathcal{F})$.
6. For $s \in \mathbb{C}$ the Epstein zetafunction is given by

$$
E(\Lambda ; s)=\sum_{v \in \Lambda}^{\prime}\|v\|^{-n s}
$$

where the prime indicates summation over non-zero elements of Λ.
(a) Show that the series defining $E(\Lambda ; \sigma)$ converges for any real $\sigma>1$.

Hint: You can use 5, or the identity $\int_{\mathbb{R}^{n}} f(x) d x=\sum_{v \in \Lambda} \int_{v+\mathcal{F}} f(x) d x$.
(b) Show that the series defining $E(\Lambda ; s)$ converges uniformly absolutely in any right halfplane of the form $\mathfrak{R}(s) \geq \sigma>1$.
(c) Conclude that the series defines a holomorphic function in the open half-plane $\mathfrak{R}(s)>1$.
(d) For $n=1$ relate $E(\Lambda ; s)$ to the Riemann zetafunction.

REMARK. In the next problem set we will analytically continue $E(\Lambda ; s)$, showing that it extends to a meromorphic function on \mathbb{C} bounded in vertical strips with poles at 0,1 and satisfying a functional equation relating the values at s and $1-s$.

Later in the course we will also fix s and consider $E(\Lambda ; s)$ as a function of Λ.

Extra: The "moduli space of complex annuli"

8. Given $0<r<s$ let Let $A_{r, s}=\left\{z \in \mathbb{C}|r<|z|<s\}\right.$. Write A_{r} for $A_{r, 1}$. Show that $A_{r, s}$ and $A_{r^{\prime}, s^{\prime}}$ are biholomorphic when $r^{\prime} / s^{\prime}=r / s$.
9. Let $f: A_{r} \rightarrow A_{r^{\prime}}$ be a biholomorphism.
(a) Show that as $z \rightarrow \partial A_{r}, f(z) \rightarrow \partial A_{r^{\prime}}$.
(b) Show that for $\varepsilon>0$ and all small enough δ (depending on ε), $f\left(A_{r+\delta, 1-\delta}\right) \supset A_{r^{\prime}+\varepsilon, 1-\varepsilon}$. Conclude that, up to inversion, we have $|f(z)| \xrightarrow[|z| \rightarrow 1]{\longrightarrow} 1$ and $|f(z)| \underset{|z| \rightarrow r}{\longrightarrow} r^{\prime}$.
(c) Let $g(z)=\log r \log |f(z)|-\log r^{\prime} \log |z|$. Show that g is harmonic in A_{r} and vanishes at ∂A_{r}. Conclude that $g(z)=0$.
(d) Show that $f(z)=c z$ where $|c|=1$, and hence that $r=r^{\prime}$.
