Math 613: Problem set 1 (due 15/9/09)

Some number theory

- 1. For a commutative ring *R* write R^{\times} for the group of invertible elements, $GL_n(R)$ for the group $\{g \in M_n(R) \mid \det g \in R^{\times}\}$, and $SL_n(R)$ for $\{g \in M_n(R) \mid \det g = 1\}$.
 - (a) Show that GL_n(ℤ), GL_n(ℤ/Nℤ) are the automorphism groups of the additive groups of the rings ℤⁿ, (ℤ/Nℤ)ⁿ respectively.
 - OPT Show that $GL_n(R)$ is the automorphism group of the *R*-module R^n .
 - (b) Let N_1, N_2 be relatively prime and let $N = N_1 N_2$. Show that $\operatorname{GL}_n(\mathbb{Z}/N\mathbb{Z}) \simeq \operatorname{GL}_n(\mathbb{Z}/N_1\mathbb{Z}) \times \operatorname{GL}_n(\mathbb{Z}/N_2\mathbb{Z})$.
 - (c) Show that the maps SL₂(ℤ) → SL₂(ℤ/Nℤ) (reduction mod *N*) are surjective. *Hint*: Given γ̄ ∈ SL₂(ℤ/Nℤ) choose a pre-image γ ∈ M₂(ℤ) such that the entries in the bottom row of γ are relatively prime.
 - (d) Find the image of the map $\operatorname{GL}_2(\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$. *Hint*: What is \mathbb{Z}^{\times} ?
 - OPT Do parts (c),(d) for SL_n , GL_n .
 - OPT Do parts (c),(d) replacing \mathbb{Z} with the ring of integers of a number field and N with an ideal in the ring of integers.
- 2. Let *G* be a group, *H* char *G* a *characteristic* subgroup. In other words, one such that for every automorphism $\sigma \in \text{Aut}(G)$ we have $\sigma(H) = H$.
 - (a) Show $H \lhd G$.
 - (b) Show that there is a natural map $\operatorname{Aut}(G) \to \operatorname{Aut}(G/H)$.
 - *(c) Classify the orbits of $Aut(\mathbb{Z}^2)$ on \mathbb{Z}^2 .
 - (d) Find all chracteristic subgroups of \mathbb{Z}^2 .
 - OPT Do parts (c),(d) in \mathbb{Z}^n .

Lattices in \mathbb{R}^n

- 3. (Construction) Let $\{v_1, \ldots, v_k\} \subset \mathbb{R}^n$ be linearly independent, let $\Lambda = \left\{\sum_{j=1}^k a_j v_j \mid \underline{a} \in \mathbb{Z}^k\right\} \subset \mathbb{R}^n$ be the subgroup they generate, and let \mathbb{R}^n / Λ be the quotient group, endowed with the quotient topology coming from the map $\pi \colon \mathbb{R}^n \to \mathbb{R}^n / \Lambda$.
 - (a) Show that the map $\mathbb{Z}^{k} \to \Lambda$ given by $\underline{a} \to \sum_{j} a_{j} v_{j}$ is an isomorphism.
 - (b) Show that Λ is a discrete subset of \mathbb{R}^n .
 - (c) Given x, y ∈ ℝⁿ such that π(x) ≠ π(y) find open sets U_x, U_y ⊂ ℝⁿ containing x, y respectively such that π(U_x) ∩ π(U_y) = Ø. You have shown that ℝⁿ/Λ is Hausdorff. *Hint*: Let r = min {||v|| | v ∈ Λ, v ≠ 0}.
 - (d) Show that \mathbb{R}^n / Λ isn't compact if k < n.
 - (e) Let k = n, and let $\mathcal{F} = \left\{ \sum_{j=1}^{k} a_j v_j \mid \forall j : |a_j| \le \frac{1}{2} \right\}$. Show that \mathcal{F} surjects onto \mathbb{R}^n / Λ and conclude that \mathbb{R}^n / Λ is compact.
 - *HINT* Applying an automorphism of \mathbb{R}^n before starting the problem will make your life much easier.

- 4. (Reduction theory) Let $\Lambda \subset \mathbb{R}^n$ be a discrete subgroup. Set $\Lambda_0 = \{0\}$, $V_0 = \{0\}$ and for $j \ge 1$ if $\Lambda \not\subset V_{j-1}$ choose $v_j \in \Lambda \setminus V_{j-1}$ minimizing the distance to V_{j-1} . Then set $\Lambda_j = \Lambda_{j-1} + \mathbb{Z}v_j$, $V_j = V_{j-1} + \mathbb{R}v_j$.
 - (a) Assume by induction that $\Lambda_{j-1} = \Lambda \cap V_{j-1}$ and that it is a lattice in V_{j-1} . Show that set of distances $\{d(v, V_{j-1})\}_{v \in \Lambda}$ has a minimal non-zero member, so that v_j exists. *Hint:* Consider first the set of distances $d(v, V_{j-1})$ for vectors v whose orthogonal projection to V_{j-1} lies in $\mathcal{F}_{j-1} = \{\sum_{i=1}^{j-1} a_i v_i \mid |a_i| \le \frac{1}{2}\}$.
 - (b) Show that $\Lambda_i = \Lambda \cap V_i$.
 - (c) Conclude that $\Lambda = \mathbb{Z}v_1 \oplus \cdots \mathbb{Z}v_j$ for some $0 \le j \le n$.

DEFINITION. Call $\Lambda < \mathbb{R}^n$ a *lattice* if it is discrete and if \mathbb{R}^n / Λ is compact.

Convergence Lemma

Write B(R) for the closed ball of radius R in \mathbb{R}^n , c_n for the volume of B(1) so that $vol(B(R)) = c_n R^n$. Fix a lattice $\Lambda < \mathbb{R}^n$.

5. Show that there exist V, C > 0 such that for any $R \ge 1$,

$$|\#(\Lambda \cap B(R)) - VR^n| \le CR^{n-1}.$$

Hint: Consider the set $\bigcup_{v \in \Lambda \cap B(R)} (v + \mathcal{F})$, and prove the claim first for $R \ge 2 \operatorname{diam}(\mathcal{F})$.

6. For $s \in \mathbb{C}$ the *Epstein zetafunction* is given by

$$E(\Lambda;s) = \sum_{v \in \Lambda}^{\prime} \|v\|^{-ns} ,$$

where the prime indicates summation over non-zero elements of Λ .

- (a) Show that the series defining $E(\Lambda; \sigma)$ converges for any real $\sigma > 1$. *Hint*: You can use 5, or the identity $\int_{\mathbb{R}^n} f(x) dx = \sum_{v \in \Lambda} \int_{v+\mathcal{F}} f(x) dx$.
- (b) Show that the series defining $E(\Lambda; s)$ converges uniformly absolutely in any right halfplane of the form $\Re(s) \ge \sigma > 1$.
- (c) Conclude that the series defines a holomorphic function in the open half-plane $\Re(s) > 1$.
- (d) For n = 1 relate $E(\Lambda; s)$ to the Riemann zetafunction.

REMARK. In the next problem set we will analytically continue $E(\Lambda; s)$, showing that it extends to a meromorphic function on \mathbb{C} bounded in vertical strips with poles at 0,1 and satisfying a functional equation relating the values at *s* and 1 - s.

Later in the course we will also fix *s* and consider $E(\Lambda; s)$ as a function of Λ .

Extra: The "moduli space of complex annuli"

- 8. Given 0 < r < s let Let $A_{r,s} = \{z \in \mathbb{C} \mid r < |z| < s\}$. Write A_r for $A_{r,1}$. Show that $A_{r,s}$ and $A_{r',s'}$ are biholomorphic when r'/s' = r/s.
- 9. Let $f: A_r \to A_{r'}$ be a biholomorphism.
 - (a) Show that as $z \to \partial A_r$, $f(z) \to \partial A_{r'}$.
 - (b) Show that for ε > 0 and all small enough δ (depending on ε), f(A_{r+δ,1-δ}) ⊃ A_{r'+ε,1-ε}. Conclude that, up to inversion, we have |f(z)| → 1 and |f(z)| → r'.
 (c) Let g(z) = log rlog |f(z)| log r' log |z|. Show that g is harmonic in A_r and vanishes at
 - ∂A_r . Conclude that g(z) = 0.
 - (d) Show that f(z) = cz where |c| = 1, and hence that r = r'.