Math 100 §105, Fall Term 2010
 Midterm Exam

November $8^{\text {th }}, 2010$

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over until instructed. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	$/ 18$
2	$/ 6$
3	$/ 6$
4	$/ 10$
Total	$/ 40$

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.
[3] a. Differentiate the function $y=\arctan (x)$; write your answer as a function of x alone (you may use the formula $\frac{d \tan u}{d u}=1+\tan ^{2} u$).
[3] b. Find the tangent line to $y=x^{\sin x}$ at the point $(\pi, 1)$.
[3] c. We have $z(t)=e^{x(t) \cdot y(t)}$ where x, y both depend on t. If at $t=1$ we have $x(1)=0$, $x^{\prime}(1)=1, y(1)=2, y^{\prime}(1)=3$ find $\frac{d z}{d t}$ at $t=1$.
[3] d. The population of Canada was roughly 18 million in the year 1960,30 million in the year 2000. Assuming the population grows exponentially, estimate the population of Canada in 2040.
[3] e. Let $f(x)=e^{x}+e^{-x}$. Use a 2nd order Taylor polynomial to give a rational number approximating $f\left(\frac{1}{2}\right)$.
[3] f. Show that the error in the approximation is less than $\frac{1}{50}$. You may use the fact that $2 \leq e \leq 3$.

2 Long-form answers

[6] Find the maximum value of $f(x)=x \sqrt{1-\frac{3}{4} x^{2}}$ on the interval $[0,1]$.

3 Long-form answers

[6] A point is moving on the curve $y^{2}=x^{3}-3$ in such a way that the x-co-ordinate is changing at the rate of $3 \frac{\text { units }}{\min }$. How fast is the distance of the point to the origin changing, when the point is at $(2, \sqrt{5})$?

4 Long-form answers

Let $f(x)=e^{x}-e^{-x}$.
[1] Verify that $\left(f^{\prime}(x)\right)^{2}=4+(f(x))^{2}$.
[3] Show that f has an inverse function.
[3] Let $x=g(y)$ be the inverse function. Find a formula for its derivative in terms of x, y.
[3] Find a formula for $g^{\prime}(y)$ involving y alone.

