Math 100 §105, Fall Term 2010 Midterm Exam

November $8^{\text{th}},2010$

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over until instructed. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	/18
2	/6
3	/6
4	/10
Total	/40

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.

[3] a. Differentiate the function $y = \arctan(x)$; write your answer as a function of x alone (you may use the formula $\frac{d \tan u}{du} = 1 + \tan^2 u$).

[3] b. Find the tangent line to $y = x^{\sin x}$ at the point $(\pi, 1)$.

[3] c. We have $z(t) = e^{x(t) \cdot y(t)}$ where x, y both depend on t. If at t = 1 we have x(1) = 0, x'(1) = 1, y(1) = 2, y'(1) = 3 find $\frac{dz}{dt}$ at t = 1.

[3] d. The population of Canada was roughly 18 million in the year 1960, 30 million in the year 2000. Assuming the population grows exponentially, estimate the population of Canada in 2040.

[3] e. Let $f(x) = e^x + e^{-x}$. Use a 2nd order Taylor polynomial to give a rational number approximating $f(\frac{1}{2})$.

[3] f. Show that the error in the approximation is less than $\frac{1}{50}$. You may use the fact that $2 \le e \le 3$.

2 Long-form answers

[6] Find the maximum value of $f(x) = x\sqrt{1 - \frac{3}{4}x^2}$ on the interval [0, 1].

3 Long-form answers

[6] A point is moving on the curve $y^2 = x^3 - 3$ in such a way that the x-co-ordinate is changing at the rate of $3\frac{\text{units}}{\text{min}}$. How fast is the <u>distance of the point to the origin</u> changing, when the point is at $(2,\sqrt{5})$?

4 Long-form answers

Let $f(x) = e^x - e^{-x}$.

[1] Verify that $(f'(x))^2 = 4 + (f(x))^2$.

[3] Show that f has an inverse function.

[3] Let x = g(y) be the inverse function. Find a formula for its derivative in terms of x, y.

[3] Find a formula for g'(y) involving y alone.