Math 100 §105, Fall Term 2010
 Sample Midterm Exam

November $8^{\text {th }}, 2010$

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over until instructed. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	$/ 18$
2	$/ 8$
3	$/ 4$
4	$/ 10$
Total	$/ 40$

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.
[3] a. If $x^{2} y^{2}+x \sin y=4$, find $\frac{d y}{d x}$. Differentating with respect to x and using the chain rule, we have:

$$
2 x y^{2}+2 x^{2} y \cdot y^{\prime}+\sin y+x \cos y \cdot y^{\prime}=0
$$

Solving for y^{\prime} we find

$$
y^{\prime}=-\frac{2 x y^{2}+\sin y}{2 x^{2} y+x \cos y}
$$

[3] b. Let $f(x)=x^{3} \ln x$. Find the $f^{(4)}(x)$, the fourth derivative of $f . \quad f^{\prime}(x)=3 x^{2} \ln x+x^{2}$; $f^{\prime \prime}(x)=6 x \ln x+5 x ; f^{(3)}(x)=6 \ln x+11$;

$$
f^{(4)}(x)=\frac{6}{x}
$$

[3] c. Differentiate $(\tan x)^{x}$. We use the logarithmic differentiation formula $f^{\prime}=f \cdot(\ln f)^{\prime}$. In this case this gives:

$$
\begin{aligned}
\left((\tan x)^{x}\right)^{\prime} & =(\tan x)^{x}(x \ln \tan x)^{\prime} \\
& =(\tan x)^{x}\left(\ln \tan x+\frac{x}{\tan x}(\tan x)^{\prime}\right) \\
& =(\tan x)^{x}\left(\ln \tan x+\frac{x}{\tan x}\left(1+\tan ^{2} x\right)\right)
\end{aligned}
$$

[3] d. Write down the first three nonzero terms in the Maclaurin series for $x \sin (-2 x)$. We have $\sin (u) \approx u-\frac{1}{6} u^{3}+\frac{1}{120} u^{5}$ to fifth order. It follows that $\sin (-2 x) \approx-2 x+\frac{8}{6} x^{3}-\frac{32}{120} x^{5}$ to fifth order. Multiplying by x we find:

$$
x \sin (-2 x) \approx-2 x^{2}+\frac{4}{3} x^{4}-\frac{4}{15} x^{6}
$$

to 6 th order.
[3] e. Use a linear approximation to approximate $\sqrt{100.2}$. Let $f(x)=\sqrt{100+x}$ where $f^{\prime}(x)=\frac{1}{2 \sqrt{100+x}}$. Then $f(0)=10, f^{\prime}(0)=\frac{1}{20}$ so

$$
f(0.2) \approx 10+\frac{0.2}{20}=10.01
$$

[3] f. Give an upper bound for the magnitude fo the error in your answer to part e. We have $f^{\prime \prime}(x)=-\frac{1}{4{\sqrt{100+x^{3}}}^{3}}$. This decreases in magnitue with x, so for $0 \leq c$ we have $\left|f^{\prime \prime}(c)\right| \leq\left|f^{\prime \prime}(0)\right|=\frac{1}{4000}$. By the Lagrange form of the remainder in Taylor's Theorem the error in the approximation is at most

$$
\frac{1}{2 \cdot 4000}(0.2)^{2}=\frac{4}{8 \cdot 10^{5}}=5 \cdot 10^{-6}
$$

2 Long-form answers

[4] The normal temperature of your Vancouver apartment is 23 degrees; the daytime temperature outside is about 5 degrees. A window remains open when you leave for UBC at 7 am . By 1 pm , the temperature in the apartment has dropped to 11 degrees. What will the temperature be at $\mathbf{7} \mathbf{p m}$? We assume that the temperature in the apartment will approach the outside temperature exponentially. In 6 hours the difference in temperatures dropped by a factor of 3 (from 18 degrees to 6). In 6 more hours we then expect a drop by the same factor, so the difference in temperature should then be 2 degrees, giving a temperature of $5+2=7$ degrees at 7 pm .

3 Long-form answers

[8] A trough is 10 m long and its ends have the shape of equilateral triangles (i.e. all three sides have equal length) that are 2 m across, situated with their points down. If the trough is being filled with water at the rate of $12 \mathrm{~m}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 60 cm deep? When the water level has reading height h the water occupies a volume of length $L=10 \mathrm{~m}$ each of whose cross-sections is an equilateral triangle of altitude h (since the cross-sectional triangle is similar to the triangular cross-section of the trough). An equilateral triangle of height h has sides $2 h \tan \frac{\pi}{6}=\frac{2}{\sqrt{3}} h$. Its area is therefore $\frac{1}{2}\left(\frac{2}{\sqrt{3}} h\right) h=3^{-1 / 2} h^{2}$. The volume of the water in the trough at time t is then

$$
V(t)=\frac{1}{\sqrt{3}} \operatorname{Lh}(t)^{2}
$$

Differentiating we find by the chain rule that

$$
\frac{d V}{d t}=\frac{2}{\sqrt{3}} L h(t) \frac{d h}{d t}
$$

We are given that $\frac{d V}{d t}=12 \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$. Solving for h^{\prime} we find

$$
h^{\prime}=\frac{\sqrt{3} \cdot 12}{2 \cdot 10 \cdot h(t)} \frac{\mathrm{m}}{\mathrm{~min}}
$$

if $h(t)$ is given in metres. When $h=0.6 \mathrm{~m}$ we then have

$$
h^{\prime}=\frac{\sqrt{3} \cdot 6}{10 \cdot 0.6} \frac{\mathrm{~m}}{\mathrm{~min}}=\sqrt{3} \frac{\mathrm{~m}}{\min }
$$

4 Long-form answers

Consider the function $f(x)=\sqrt{1-x e^{-x / a}}$ on the interval $[0,1]$. Here a is a positive parameter
[5] a. Find the absolute maximum of f on the interval. For $a>0$ and $x \geq 0$ we have $-x / a \leq 0$ so $0 \leq e^{-x / a} \leq 1$. It follows that $x e^{-x / a} \leq 1$ so $1-x e^{-x / a} \geq 0$ and f is defined and continuous on $[0,1]$. Also, for $x \geq 0 x e^{-x / a} \geq 0$ so $1-x e^{-x / a} \leq 1$. It follows that $f(x) \leq \sqrt{1}=f(0)$ so the absolute maximum of f is 1 , and it occurs at $x=0$.
[5] a'. Find the absolute minimum of f on the interval. Since the square-root function is monotone its domain, it's enough to minimize $g(x)=1-x e^{-x / a}$. This function is clearly differentiable everywhere, so its absolute maximum on $[0,1]$ exists and occurs either at an endpoint or at a critical point. We record:

$$
g(0)=1, \quad g(1)=1-e^{-1 / a}<1
$$

We have $g^{\prime}(x)=-e^{-x / a}+\frac{x}{a} e^{-x / a}=\left(\frac{x}{a}-1\right) e^{-x / a}$. Since $e^{-x / a}$ never vanishes, the only possible critical point is at $x_{0}=a$. If $a>1$ this is outside the interval, and the absolute minimum is $\sqrt{1-e^{-1 / a}}$ at $x=1$. Otherwise we note that $g^{\prime}<0$ for $x<a$ and $g^{\prime}>0$ for $x>a$. It follows that g is increasing between $x_{0}=a$ and 1 so $g(a)<g(1)$, and the absolute minimum of f is, in that case, $f(a)=\sqrt{1-a e^{-a / a}}=\sqrt{1-\frac{a}{e}}$.
[2] b. Let $F(a)$ be your answer to part a. Assuming that a is very small, write down a linear approximation to $F(a)$. We have $F(a)=1$ so this is also the linear approximation.
[2] b'. Let $F(a)$ be your answer to part a'. Assuming that a is very small, write down a linear approximation to $F(a)$. For $0<a<1$ we have $F(a)=\sqrt{1-\frac{a}{e}}$. We note first that $\lim _{a \rightarrow 0} F(a)$ exists an equals 1 , so we define $F(0)=1$. The resulting function is differentiable at 0 , and its derivative is $F^{\prime}(0)=\left[\frac{1}{2 \sqrt{1-\frac{a}{e}}} \cdot\left(-\frac{1}{e}\right)\right]_{a=0}=-\frac{1}{2 e}$ so the linear approximation is

$$
F(a) \approx 1-\frac{a}{2 e}
$$

[3] c. Find the absolute minimum and maximum of $f(x)=e^{-|x|}$ on the interval [$-10,10$]. Where are they attained? Since $f(x)=f(-x)$ it's enough to study f on the interval $[0,10]$ where $f(x)=e^{-x}$. This function is continuous and differentiable there, and has no critical points (for $x>0$ we have $f^{\prime}(x)=e^{x}$ and this never vanishes) so its exterma occur at the endpoints of that interval. $f(0)=1$ and $f(10)=e^{-10}<1$. It follows that the absolute maximum of f on $[-10,10]$ is 1 , attained at 0 and that the absolute minimum is e^{-10}, attained at ± 10.

