Math 100 §105, Fall Term 2010 Solutions to Midterm Exam

October $4^{\text {th }}, 2010$

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over until instructed. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	$/ 18$
2	$/ 8$
3	$/ 4$
4	$/ 10$
Total	$/ 40$

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.
[3] a. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow \infty} \frac{x^{3}-\sin x}{2 x^{3}+5 x+1}
$$

$\lim _{x \rightarrow \infty} \frac{x^{3}-\sin x}{2 x^{3}+5 x+1}=\lim _{x \rightarrow \infty} \frac{1-x^{-3} \sin x}{2+5 x^{-2}+x^{-3}}$. Now $-\frac{1}{x^{3}} \leq \frac{\sin x}{x^{3}} \leq \frac{1}{x^{3}}$ so $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{3}}=0$ by the squeeze theorem. The quotient rule and linearity give

$$
\lim _{x \rightarrow \infty} \frac{1-x^{-3} \sin x}{2+5 x^{-2}+x^{-3}}=\frac{\lim _{x \rightarrow \infty} 1-\lim _{x \rightarrow \infty} \frac{\sin x}{x^{3}}}{2+5 \lim _{x \rightarrow \infty} x^{-2}+\lim _{x \rightarrow \infty} x^{-3}}=\frac{1-0}{2+5 \cdot 0+0}=\frac{1}{2}
$$

[3] b. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{\tan x}{x}
$$

By the quotient rule, $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x}=\frac{\lim _{x \rightarrow 0} \frac{\sin x}{x}}{\lim _{x \rightarrow 0} \cos x}=\frac{1}{1}=1$ since $\lim _{x \rightarrow 0} \frac{\sin }{x}=1$ from the lecture and $\lim _{x \rightarrow 0} \cos x=\cos (0)=1$ by continuity.
[3] c. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x^{2}}-\sqrt{1+x^{2}}}{x^{3}}
$$

We have $\frac{\sqrt{1+2 x^{2}}-\sqrt{1+x^{2}}}{x^{3}}=\frac{\sqrt{1+2 x^{2}}-\sqrt{1+x^{2}}}{x^{3}} \cdot \frac{\sqrt{1+2 x^{2}}+\sqrt{1+x^{2}}}{\sqrt{1+2 x^{2}}+\sqrt{1+x^{2}}}=\frac{\left(1+2 x^{2}\right)-\left(1+x^{2}\right)}{x^{3}} \cdot \frac{1}{\sqrt{1+2 x^{2}}+\sqrt{1+x^{2}}}=\frac{x^{2}}{x^{3}}$. $\frac{1}{\sqrt{1+2 x^{2}}+\sqrt{1+x^{2}}}=\frac{1}{x} \cdot \frac{1}{\sqrt{1+2 x^{2}}+\sqrt{1+x^{2}}}$. Now $\frac{1}{\sqrt{1+2 x^{2}}+\sqrt{1+x^{2}}}$ is a continuous function, so $\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+2 x^{2}}+\sqrt{1+x^{2}}}=$ $\frac{1}{1+1}=\frac{1}{2} \neq 0$ while $\frac{1}{x}$ grows without bound. It follows that the given limit does not exist.
[3] d. Differentiate the following function:

$$
\left(1+x^{2} \sin x\right)^{1 / 3}
$$

By the chain rule, $\frac{d}{d x}\left(1+x^{2} \sin x\right)^{1 / 3}=\frac{1}{3}\left(1+x^{2} \sin x\right)^{-2 / 3} \cdot \frac{d}{d x}\left(1+x^{2} \sin x\right)$. We evaluate the latter derivative by the product rule and find

$$
\frac{d}{d x}\left(1+x^{2} \sin x\right)^{1 / 3}=\frac{1}{3}\left(1+x^{2} \sin x\right)^{-2 / 3}\left(2 x \sin x+x^{2} \cos x\right)
$$

[3] e. Differentiate the following function:

$$
\frac{e^{x}+e^{-x}}{2 \cos x}
$$

By the quotient rule this is

$$
\frac{1}{2} \frac{\left(e^{x}-e^{-x}\right) \cos x+\left(e^{x}+e^{-x}\right) \sin x}{\cos ^{2} x}
$$

[3] f. Write an equation of the form $y=a x+b$ for the line tangent to the following function at the point $(1,1)$.

$$
y=x^{4}-\frac{1}{\pi} \sin (\pi x)
$$

Since $\frac{d y}{d x}=4 x^{3}-\cos (\pi x)$ the slope of the tangent at $x=1$ is $4-\cos (\pi)=4-(-1)=5$. The equation for the line is then $y-1=5(x-1)$, that is

$$
y=5 x-4
$$

2 Long-form answers

A ball falling from rest in air is at height $h(t)=H_{0}-g t_{0}\left(t+t_{0} e^{-t / t_{0}}-t_{0}\right)$ at time t. Here H_{0} is the initial height, g is the gravitational constant and t_{0} depends on the body.
[3] a. Find the velocity $v(t)$ of the ball.
We have $h(t)=H_{0}+g t_{0}^{2}-g t_{0} t-g t_{0}^{2} e^{-t / t_{0}}$. The first two terms are constant, and the the third is linear. For the last term we use the chain rule to find $\left(e^{-t / t_{0}}\right)^{\prime}=\left(-\frac{1}{t_{0}}\right) e^{-t / t_{0}}$ so the derivative is:

$$
v(t)=\frac{d h}{d t}=-g t_{0}-g t_{0}^{2} e^{-t / t_{0}}\left(-\frac{1}{t_{0}}\right)=g t_{0}\left(e^{-\frac{t}{t_{0}}}-1\right) .
$$

Common difficulties:

1. Not realizing that t_{0} is a constant.
2. When using the chain rule, getting $-\frac{t}{t_{0}} e^{-t / t_{0}}$ (note the extra factor of t).
3. Many sign errors.
[2] b. Find its acceleration $a(t)$.

We differentiate again to find

$$
a(t)=\frac{d v}{d t}=g t_{0}\left(-\frac{1}{t_{0}} e^{-\frac{t}{t_{0}}}-0\right)=-g e^{-t / t_{0}}
$$

Common difficulties:

1. Sign errors.
2. If made error (2) above, not using the product rule to differentiate $t \cdot e^{t / t_{0}}$.
[1] c. Find $v(0), a(0)$.
$v(0)=g t_{0}\left(e^{-0}-1\right)=g t_{0}(1-1)=0$ and $a(0)=-g e^{-0}=-g$.
[2] d. Find $\lim _{t \rightarrow \infty} v(t)$.
As $t \rightarrow \infty, t / t_{0}$ tends to ∞. Hence so does $e^{t / t_{0}}$. It follows that $\lim _{t \rightarrow \infty} e^{-t / t_{0}}=\lim _{t \rightarrow \infty} \frac{1}{e^{t / t_{0}}}=0$. By linearity of the limit we find

$$
\lim _{t \rightarrow \infty} v(t)=g t_{0}(0-1)=-g t_{0}
$$

Common difficulties:

1. Writing things like e^{∞} and $e^{-\infty}$ which don't make sense.
2. Claiming that $\lim _{t \rightarrow \infty} e^{-t / t_{0}}=\infty$.

3 Long-form answers

[4] Let $f(x)$ be a function defined for $0 \leq x \leq 10$. You are given that $f(5)=1$ and that $f^{\prime}(5)$ exists and equals 8 . Using only the definition of the derivative, evaluate $h^{\prime}(5)$ where $h(x)=(f(x))^{2}$.
We need to evaluate

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{h(5+t)-h(5)}{t} & =\lim _{t \rightarrow 0} \frac{(f(5+t))^{2}-(f(5))^{2}}{t} \\
& =\lim _{t \rightarrow 0} \frac{(f(5+t)-f(5)(f(5+t)+f(5))}{t} \\
& =\lim _{t \rightarrow 0}\left[\frac{(f(5+t)-f(5))}{t} \cdot(f(5+t)+f(5))\right] \\
(\text { product rule }) & =\lim _{t \rightarrow 0}\left[\frac{(f(5+t)-f(5))}{t}\right] \cdot \lim _{t \rightarrow 0}[f(5+t)+f(5)] \\
\text { (definition of } \left.f^{\prime}(5)+\text { linearity }\right) & =f^{\prime}(5) \cdot\left[\left(\lim _{x \rightarrow 5} f(x)\right)+f(5)\right]
\end{aligned}
$$

(the function is continuous where differentiable) $=f^{\prime}(5)[f(5)+f(5)]$

$$
\begin{aligned}
& =2 f(5) f^{\prime}(5) \\
& =2 \cdot 8 \cdot 1=16
\end{aligned}
$$

Common difficulties:

1. Solving the problem by the chain rule. The problem explicitly says not to do that.
2. This was by far the hardest problem; only 4 correct solutions among 200 students. Nearly everyone just got 1 point for knowing the definition of the derivative.
3. Many people wrote things like $(f(x+t))^{2}=f(x)^{2}+2 f(x) t+t^{2}$ or $(f(x+t))^{2}=f\left((x+t)^{2}\right)=$ $f\left(x^{2}+2 x t+t^{2}\right)$. This is a sign of doing symbolic manipulation without meaning.
4. Some students hit on the (good) idea of first approximating f by its tangent line at $x=5$, and then calculating the limit. This gives the right answer (by the chain rule), but is not quite a correct solution.

4 Long-form answers

The function $f(x)$ is defined for non-zero x by

$$
f(x)=\left\{\begin{array}{ll}
a x^{2}+b x+c & x<0 \\
2+x^{3} \cos \left(x^{-1}\right) & x>0
\end{array} .\right.
$$

[5] a. Determine all values (if any exist) of the constants a, b, c so that $f(x)$ can be made continuous for all x by choosing $f(0)$ appropriately. (Don't forget to justify your answer!)
Note first that f is continuous for both $x<0$ and $x>0$ so we only need to check at $x=0$. We have $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(a x^{2}+b x+c\right)=c$ since polynomials are continuous. On the other side $\cos \left(x^{-1}\right)$ is bounded between -1 and 1 while x^{3} tends to zero so the squeeze theorem shows $\lim _{x \rightarrow 0} x^{3} \cos \left(x^{-1}\right)=0$ and hence $\lim _{x \rightarrow 0^{+}} f(x)=2$. To make f continuos at 0 we need both one-sided limits to equal $f(0)$ so we need both to be equal, in which case we set $f(0)$ equal to that value. To conclude, f can be made continuous exactly when $c=2$ (and a, b can be arbitrary).

Common difficulties:

1. The most common way to calculate $\lim _{x \rightarrow 0^{+}} f(x)$ was to write: $f(0)=2+0^{3} \cos \left(0^{-1}\right)=2$. Unfortunately 0^{-1} and $\cos \left(0^{-1}\right)$ are not numbers.
2. A large minority wrote something like $a x^{2}+b x+c=2+x^{3} \cos \left(x^{-1}\right)$ and tried to continue from there. But each of the two expression represents f for different values of x.
3. Others said that this equality should hold "at $x=0$ ". But the problem does not define f at zero. What should be true is that the limits at zero are equal.
4. Some students tried to relate the derivatives of the two expressions.
[5] b. Choosing $f(0)$ as above, determine all values (if any exist) of the constants a, b, c so that $f^{\prime}(x)$ is continuous for all x. (Don't forget to justify your answer!)
For $x<0$ we have $f^{\prime}(x)=2 a x+b$ which is continuous. We also note $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=b$. For $x>0$ we have $f^{\prime}(x)=\left(x^{3}\right)^{\prime} \cos \left(x^{-1}\right)-x^{3}\left(\cos \left(x^{-1}\right)\right)^{\prime}=3 x^{2} \cos \left(x^{-1}\right)+x^{3}\left(-\sin \left(x^{-1}\right)\right)\left(-\frac{1}{x^{2}}\right)=$ $3 x^{2} \cos \left(x^{-1}\right)+x \sin \left(x^{-1}\right)$ so $f^{\prime}(x)$ is continuous for $x>0$ also. Since both $\cos \left(x^{-1}\right), \sin \left(x^{-1}\right)$ are bounded while $x^{2}, x^{3} \rightarrow 0$ as $x \rightarrow 0$ we also have $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=0$. To make f^{\prime} continuous at $x=0$ we then need $b=0$, and we still need $c=2$ (if $f^{\prime}(0)$ is to exist we need f continuous!), but a can be arbitrary.

Common difficulties:

1. Differentiating $x^{3} \cos \left(x^{-1}\right)$ correctly was difficult. Answers included: $3 x^{2}\left(-\sin \left(x^{-1}\right)\right)$ (differentating both factors and $3 x^{2} \cos \left(x^{-1}\right)-x^{3} \sin \left(x^{-1}\right)$.
2. Again, $\sin \left(0^{-1}\right)$ and $\cos \left(0^{-1}\right)$ don't make sense.
3. Forgetting to put parathenses around factors with a minus sign makes a difference. $x^{3}-\frac{1}{x^{2}}$ is not the usual notation for the proudct of x^{3} and $-\frac{1}{x^{3}}$, but for the difference of x^{3} and $\frac{1}{x^{2}}$.
