Math 100 §105, Fall Term 2010 Solutions to Midterm Exam

October 4^{th} ,2010

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over until instructed. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	/18
2	/8
3	/4
4	/10
Total	/40

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.

[3] a. Evaluate the following limit (or show it does not exist):

$$\lim_{x \to \infty} \frac{x^3 - \sin x}{2x^3 + 5x + 1}$$

 $\lim_{x\to\infty} \frac{x^3 - \sin x}{2x^3 + 5x + 1} = \lim_{x\to\infty} \frac{1 - x^{-3} \sin x}{2 + 5x^{-2} + x^{-3}}.$ Now $-\frac{1}{x^3} \le \frac{\sin x}{x^3} \le \frac{1}{x^3}$ so $\lim_{x\to\infty} \frac{\sin x}{x^3} = 0$ by the squeeze theorem. The quotient rule and linearity give

$$\lim_{x \to \infty} \frac{1 - x^{-3} \sin x}{2 + 5x^{-2} + x^{-3}} = \frac{\lim_{x \to \infty} 1 - \lim_{x \to \infty} \frac{\sin x}{x^3}}{2 + 5 \lim_{x \to \infty} x^{-2} + \lim_{x \to \infty} x^{-3}} = \frac{1 - 0}{2 + 5 \cdot 0 + 0} = \frac{1}{2}.$$

[3] b. Evaluate the following limit (or show it does not exist):

$$\lim_{x \to 0} \frac{\tan x}{x}$$

By the quotient rule, $\lim_{x\to 0} \frac{\tan x}{x} = \lim_{x\to 0} \frac{\sin x}{x \cos x} = \frac{\lim_{x\to 0} \frac{\sin x}{x}}{\lim_{x\to 0} \cos x} = \frac{1}{1} = 1$ since $\lim_{x\to 0} \frac{\sin x}{x} = 1$ from the lecture and $\lim_{x\to 0} \cos x = \cos(0) = 1$ by continuity.

[3] c. Evaluate the following limit (or show it does not exist):

$$\lim_{x \to 0} \frac{\sqrt{1+2x^2} - \sqrt{1+x^2}}{x^3}$$

We have $\frac{\sqrt{1+2x^2}-\sqrt{1+x^2}}{x^3} = \frac{\sqrt{1+2x^2}-\sqrt{1+x^2}}{x^3} \cdot \frac{\sqrt{1+2x^2}+\sqrt{1+x^2}}{\sqrt{1+2x^2}+\sqrt{1+x^2}} = \frac{(1+2x^2)-(1+x^2)}{x^3} \cdot \frac{1}{\sqrt{1+2x^2}+\sqrt{1+x^2}} = \frac{x^2}{x^3} \cdot \frac{1}{\sqrt{1+2x^2}+\sqrt{1+x^2}} = \frac{1}{x} \cdot \frac{1}{\sqrt{1+2x^2}+\sqrt{1+x^2}}$. Now $\frac{1}{\sqrt{1+2x^2}+\sqrt{1+x^2}}$ is a continuous function, so $\lim_{x\to 0} \frac{1}{\sqrt{1+2x^2}+\sqrt{1+x^2}} = \frac{1}{1+1} = \frac{1}{2} \neq 0$ while $\frac{1}{x}$ grows without bound. It follows that the given limit *does not exist.*

[3] d. Differentiate the following function:

$$(1+x^2\sin x)^{1/3}$$

By the chain rule, $\frac{d}{dx} (1 + x^2 \sin x)^{1/3} = \frac{1}{3} (1 + x^2 \sin x)^{-2/3} \cdot \frac{d}{dx} (1 + x^2 \sin x)$. We evaluate the latter derivative by the product rule and find

$$\frac{d}{dx} \left(1 + x^2 \sin x\right)^{1/3} = \frac{1}{3} \left(1 + x^2 \sin x\right)^{-2/3} \left(2x \sin x + x^2 \cos x\right) \,.$$

[3] e. Differentiate the following function:

$$\frac{e^x + e^{-x}}{2\cos x}$$

By the quotient rule this is

$$\frac{1}{2} \frac{(e^x - e^{-x})\cos x + (e^x + e^{-x})\sin x}{\cos^2 x}$$

[3] f. Write an equation of the form y = ax + b for the line tangent to the following function at the point (1,1).

$$y = x^4 - \frac{1}{\pi}\sin(\pi x)$$

Since $\frac{dy}{dx} = 4x^3 - \cos(\pi x)$ the slope of the tangent at x = 1 is $4 - \cos(\pi) = 4 - (-1) = 5$. The equation for the line is then y - 1 = 5(x - 1), that is

$$y = 5x - 4.$$

2 Long-form answers

A ball falling from rest in air is at height $h(t) = H_0 - gt_0(t + t_0e^{-t/t_0} - t_0)$ at time t. Here H_0 is the initial height, g is the gravitational constant and t_0 depends on the body.

[3] a. Find the velocity v(t) of the ball.

We have $h(t) = H_0 + gt_0^2 - gt_0t - gt_0^2e^{-t/t_0}$. The first two terms are constant, and the the third is linear. For the last term we use the chain rule to find $(e^{-t/t_0})' = (-\frac{1}{t_0})e^{-t/t_0}$ so the derivative is:

$$v(t) = \frac{dh}{dt} = -gt_0 - gt_0^2 e^{-t/t_0} \left(-\frac{1}{t_0}\right) = gt_0 \left(e^{-\frac{t}{t_0}} - 1\right) \,.$$

Common difficulties:

- 1. Not realizing that t_0 is a constant.
- 2. When using the chain rule, getting $-\frac{t}{t_0}e^{-t/t_0}$ (note the extra factor of t).
- 3. Many sign errors.

[2] b. Find its acceleration a(t).

We differentiate again to find

$$a(t) = \frac{dv}{dt} = gt_0 \left(-\frac{1}{t_0} e^{-\frac{t}{t_0}} - 0 \right) = -ge^{-t/t_0}.$$

Common difficulties:

- 1. Sign errors.
- 2. If made error (2) above, not using the product rule to differentiate $t \cdot e^{t/t_0}$.

[1] c. Find
$$v(0)$$
, $a(0)$.
 $v(0) = gt_0 (e^{-0} - 1) = gt_0(1 - 1) = 0$ and $a(0) = -ge^{-0} = -gt_0(1 - 1) = 0$.

[2] d. Find $\lim_{t\to\infty} v(t)$.

As $t \to \infty$, t/t_0 tends to ∞ . Hence so does e^{t/t_0} . It follows that $\lim_{t\to\infty} e^{-t/t_0} = \lim_{t\to\infty} \frac{1}{e^{t/t_0}} = 0$. By linearity of the limit we find

$$\lim_{t \to \infty} v(t) = gt_0 (0 - 1) = -gt_0.$$

Common difficulties:

- 1. Writing things like e^{∞} and $e^{-\infty}$ which don't make sense.
- 2. Claiming that $\lim_{t\to\infty} e^{-t/t_0} = \infty$.

3 Long-form answers

[4] Let f(x) be a function defined for $0 \le x \le 10$. You are given that f(5) = 1 and that f'(5) exists and equals 8. Using only the definition of the derivative, evaluate h'(5) where $h(x) = (f(x))^2$.

We need to evaluate

$$\begin{split} \lim_{t \to 0} \frac{h(5+t) - h(5)}{t} &= \lim_{t \to 0} \frac{(f(5+t))^2 - (f(5))^2}{t} \\ &= \lim_{t \to 0} \frac{(f(5+t) - f(5))(f(5+t) + f(5))}{t} \\ &= \lim_{t \to 0} \left[\frac{(f(5+t) - f(5))}{t} \cdot (f(5+t) + f(5)) \right] \\ &(\text{product rule}) = \lim_{t \to 0} \left[\frac{(f(5+t) - f(5))}{t} \right] \cdot \lim_{t \to 0} [f(5+t) + f(5)] \\ &(\text{definition of } f'(5) + \text{linearity}) = f'(5) \cdot \left[\left(\lim_{x \to 5} f(x) \right) + f(5) \right] \\ &(\text{the function is continuous where differentiable}) = f'(5) [f(5) + f(5)] \\ &= 2f(5)f'(5) \\ &= 2 \cdot 8 \cdot 1 = 16 \,. \end{split}$$

Common difficulties:

- 1. Solving the problem by the chain rule. The problem explicitly says not to do that.
- 2. This was by far the hardest problem; only 4 correct solutions among 200 students. Nearly everyone just got 1 point for knowing the definition of the derivative.
- 3. Many people wrote things like $(f(x+t))^2 = f(x)^2 + 2f(x)t + t^2$ or $(f(x+t))^2 = f((x+t)^2) = f(x^2 + 2xt + t^2)$. This is a sign of doing symbolic manipulation without meaning.
- 4. Some students hit on the (good) idea of first approximating f by its tangent line at x = 5, and then calculating the limit. This gives the right answer (by the chain rule), but is not quite a correct solution.

4 Long-form answers

The function f(x) is defined for non-zero x by

$$f(x) = \begin{cases} ax^2 + bx + c & x < 0\\ 2 + x^3 \cos(x^{-1}) & x > 0 \end{cases}.$$

[5] a. Determine all values (if any exist) of the constants a, b, c so that f(x) can be made continuous for all x by choosing f(0) appropriately. (Don't forget to justify your answer!)

Note first that f is continuous for both x < 0 and x > 0 so we only need to check at x = 0. We have $\lim_{x\to 0^-} f(x) = \lim_{x\to 0} (ax^2 + bx + c) = c$ since polynomials are continuous. On the other side $\cos(x^{-1})$ is bounded between -1 and 1 while x^3 tends to zero so the squeeze theorem shows $\lim_{x\to 0} x^3 \cos(x^{-1}) = 0$ and hence $\lim_{x\to 0^+} f(x) = 2$. To make f continuous at 0 we need both one-sided limits to equal f(0) so we need both to be equal, in which case we set f(0) equal to that value. To conclude, f can be made continuous exactly when c = 2 (and a, b can be arbitrary).

Common difficulties:

- 1. The most common way to calculate $\lim_{x\to 0^+} f(x)$ was to write: $f(0) = 2 + 0^3 \cos(0^{-1}) = 2$. Unfortunately 0^{-1} and $\cos(0^{-1})$ are not numbers.
- 2. A large minority wrote something like $ax^2 + bx + c = 2 + x^3 \cos(x^{-1})$ and tried to continue from there. But each of the two expression represents f for different values of x.
- 3. Others said that this equality should hold "at x = 0". But the problem does not define f at zero. What should be true is that the *limits* at zero are equal.
- 4. Some students tried to relate the derivatives of the two expressions.

[5] b. Choosing f(0) as above, determine all values (if any exist) of the constants a, b, c so that f'(x) is continuous for all x. (Don't forget to justify your answer!)

For x < 0 we have f'(x) = 2ax + b which is continuous. We also note $\lim_{x\to 0^-} f'(x) = b$. For x > 0 we have $f'(x) = (x^3)' \cos(x^{-1}) - x^3 (\cos(x^{-1}))' = 3x^2 \cos(x^{-1}) + x^3 (-\sin(x^{-1})) (-\frac{1}{x^2}) = 3x^2 \cos(x^{-1}) + x \sin(x^{-1})$ so f'(x) is continuous for x > 0 also. Since both $\cos(x^{-1}), \sin(x^{-1})$ are bounded while $x^2, x^3 \to 0$ as $x \to 0$ we also have $\lim_{x\to 0^+} f'(x) = 0$. To make f' continuous at x = 0 we then need b = 0, and we still need c = 2 (if f'(0) is to exist we need f continuous!), but a can be arbitrary.

Common difficulties:

- 1. Differentiating $x^3 \cos(x^{-1})$ correctly was difficult. Answers included: $3x^2(-\sin(x^{-1}))$ (differentiating both factors and $3x^2 \cos(x^{-1}) x^3 \sin(x^{-1})$.
- 2. Again, $\sin(0^{-1})$ and $\cos(0^{-1})$ don't make sense.
- 3. Forgetting to put parathenses around factors with a minus sign makes a difference. $x^3 \frac{1}{x^2}$ is not the usual notation for the product of x^3 and $-\frac{1}{x^3}$, but for the difference of x^3 and $\frac{1}{x^2}$.