Math 100 §105, Fall Term 2010
 Midterm Exam

October $4^{\text {th }}, 2010$

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over until instructed. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	$/ 18$
2	$/ 8$
3	$/ 4$
4	$/ 10$
Total	$/ 40$

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.
[3] a. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow \infty} \frac{x^{3}-\sin x}{2 x^{3}+5 x+1}
$$

[3] b. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{\tan x}{x}
$$

[3] c. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x^{2}}-\sqrt{1+x^{2}}}{x^{3}}
$$

[3] d. Differentiate the following function:

$$
\left(1+x^{2} \sin x\right)^{1 / 3}
$$

[3] e. Differentiate the following function:

$$
\frac{e^{x}+e^{-x}}{2 \cos x}
$$

[3] f. Write an equation of the form $y=a x+b$ for the line tangent to the following function at the point $(1,1)$.

$$
y=x^{4}-\frac{1}{\pi} \sin (\pi x)
$$

2 Long-form answers

A ball falling from rest in air is at height $h(t)=H_{0}-g t_{0}\left(t+t_{0} e^{-t / t_{0}}-t_{0}\right)$ at time t. Here H_{0} is the initial height, g is the gravitational constant and t_{0} depends on the body.
[3] a. Find the velocity $v(t)$ of the ball.
[2] b. Find its acceleration $a(t)$.
[1] c. Find $v(0), a(0)$.
[2] d. Find $\lim _{t \rightarrow \infty} v(t)$.

3 Long-form answers

[4] Let $f(x)$ be a function defined for $0 \leq x \leq 10$. You are given that $f(5)=1$ and that $f^{\prime}(5)$ exists and equals 8 . Using only the definition of the derivative, evaluate $h^{\prime}(5)$ where $h(x)=(f(x))^{2}$.

4 Long-form answers

The function $f(x)$ is defined for non-zero x by

$$
f(x)=\left\{\begin{array}{ll}
a x^{2}+b x+c & x<0 \\
2+x^{3} \cos \left(x^{-1}\right) & x>0
\end{array} .\right.
$$

[5] a. Determine all values (if any exist) of the constants a, b, c so that $f(x)$ can be made continuous for all x by choosing $f(0)$ appropriately. (Don't forget to justify your answer!)
[5] b. Choosing $f(0)$ as above, determine all values (if any exist) of the constants a, b, c so that $f^{\prime}(x)$ is continuous for all x. (Don't forget to justify your answer!)

