Math 100 §105, Fall Term 2010 Sample midterm Exam

October $4^{\text {th }}, 2010$

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	$/ 18$
2	$/ 8$
3	$/ 6$
4	$/ 8$
Total	$/ 40$

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.
[3] a. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{2}+2 x+1}=\frac{\lim _{x \rightarrow-2}\left(x^{2}-4\right)}{\lim _{x \rightarrow-2}\left(x^{2}+2 x+1\right)}=\frac{0}{1}=0
$$

where the second equality holds since polynomials are continuous, and the first holds by the quotient rule (since the limit of the denominator is non-zero).
[3] b. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}
$$

Writing $f(x)=e^{3 x}$ and noting that $f(0)=1$ the given limit is simply the derivative $f^{\prime}(0)$. By the chain rule $f^{\prime}(x)=3 e^{3 x}$ so the given limit is $3 e^{0}=3$.
[3] c. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow \infty} \frac{x \cos x}{x^{2}+1}
$$

For any x we have $-1 \leq \cos x \leq 1$ and $0<\frac{1}{x^{2}+1} \leq \frac{1}{x^{2}}$. Thus for x positive we have

$$
-\frac{1}{x}=\frac{-x}{x^{2}} \leq \frac{x \cos x}{x^{2}+1} \leq \frac{x}{x^{2}}=\frac{1}{x}
$$

Since $\lim _{x \rightarrow \infty} \frac{1}{x}=0$ the same holds for $\lim _{x \rightarrow \infty}-\frac{1}{x}$, so by the squeeze rule,

$$
\lim _{x \rightarrow \infty} \frac{x \cos x}{x^{2}+1}=0
$$

[3] d. Differentiate the following function:

$$
\tan \left(e^{x / 2}\right)
$$

Applying the chain rule twice,

$$
\frac{d}{d x}\left(\tan \left(e^{x / 2}\right)\right)=\left(1+\tan ^{2}\left(e^{x / 2}\right)\right) \cdot \frac{d}{d x}\left(e^{x / 2}\right)=\left(1+\tan ^{2}\left(e^{x / 2}\right)\right) \frac{1}{2} e^{x / 2}
$$

where we have used $\frac{d}{d x}(\tan x)=1+\tan ^{2} x$ and $\frac{d}{d x} e^{x}=e^{x}$.
[3] e. Given $f(1)=1, f^{\prime}(1)=2, g(1)=3, g^{\prime}(1)=4$ evaluate $h^{\prime}(1)$ where

$$
h(x)=\frac{x g^{2}(x)}{f(x)}
$$

By the product rule, $\left(x g^{2}(x)\right)^{\prime}=g^{2}(x)+2 x g(x) g^{\prime}(x)$. By the quotient rule it follows that

$$
h^{\prime}(x)=\frac{g^{2}(x)+2 x g(x) g^{\prime}(x)}{f(x)}-\frac{x g^{2}(x) f^{\prime}(x)}{f^{2}(x)}
$$

Evaluting at $x=1$ we find:

$$
h^{\prime}(1)=\frac{3^{2}+2 \cdot 1 \cdot 3 \cdot 4}{1}-\frac{1 \cdot 3^{2} \cdot 2}{1^{2}}=33-18=15 .
$$

[3] f. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos x}}{x}
$$

We have $\frac{\sqrt{1-\cos x}}{x}=\frac{\sqrt{1-\cos x}}{x} \frac{\sqrt{1+\cos x}}{\sqrt{1+\cos x}}=\frac{\sqrt{1-\cos ^{2} x}}{x \sqrt{1+\cos x}}=\frac{|\sin x|}{x \sqrt{1+\cos x}}$. since $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\frac{1}{\sqrt{1+\cos x}}$ is continous at $x=0$ we use the product rule to find:

$$
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{1-\cos x}}{x}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{1+\cos x}}=1 \cdot \frac{1}{\sqrt{2}}
$$

and

$$
\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1-\cos x}}{x}=\lim _{x \rightarrow 0^{+}} \frac{-\sin x}{x} \cdot \lim _{x \rightarrow 0^{+}} \frac{1}{\sqrt{1+\cos x}}=-1 \cdot \frac{1}{\sqrt{2}}
$$

It follows that the limit does not exist.

2 Long-form answers

[4] a. Let $f(x)=\frac{x}{x-1}$. Find $f^{\prime}(x)$ using the definition of the derivative. No marks will be given for use of differentiation rules.
Let $x \neq 1$ so that f is defined. We need to evalute the limit

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x+h}{x+h-1}-\frac{x}{x-1}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{(x+h)(x-1)-x(x+h-1)}{(x-1)(x+h-1)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{2}+h x-x-h-x^{2}-h x+x}{(x-1)(x+h-1)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-h}{(x-1)(x+h-1)}\right) \\
& =\lim _{h \rightarrow 0} \frac{-1}{x-1} \cdot \frac{1}{x+h-1}
\end{aligned}
$$

Since $\frac{-1}{x-1}$ is a constant the last limit equals

$$
-\frac{1}{x-1} \lim _{h \rightarrow 0} \frac{1}{x+h-1} .
$$

By the quotient rule this equals

$$
-\frac{1}{x-1} \frac{1}{\lim _{h \rightarrow 0}(x+h-1)}=-\frac{1}{x-1} \cdot \frac{1}{x-1}=-\frac{1}{(x-1)^{2}}
$$

[4] b. Show that the equation $\cos x=x$ has a solution.
Consider the function $f(x)=\cos x-x$. It is continuous, being the difference of continuous functions. Also, we have $f(0)=1-0=1>0$ and $f\left(\frac{\pi}{2}\right)=0-\frac{\pi}{2}=-\frac{\pi}{2}<0$. By the intermediate value theorem there is $x, 0<x<\frac{\pi}{2}$ such that $f(x)=0$, in other words such that $\cos x=x$.

3 Long-form answers

A reaction occurs at the rate $R(x)=A x^{3} e^{-x / E}$ where x is the energy of the incoming particles, E is a constant energy scale, and A is an overall constant.
[4] a. Find the range of energies $x \geq 0$ for which a small increase in the energy will increase the rate of the reaction.
[2] b. Find the range of energies $x \geq 0$ for which a small increase in the energy will decrease the rate of the reaction. Your answers may depend on the constants A and E. Don't forget to justify them!

By the product rule we have $R^{\prime}(x)=3 A x^{2} e^{-x / E}-A x^{3} \frac{1}{E} e^{-x / E}=A x^{2} e^{-x / E} \cdot\left(3-\frac{x}{E}\right)$. Since $A x^{2} e^{-x / E}$ is always positive, $R^{\prime}(x)>0$ when $3-\frac{x}{E}>0$ and $R^{\prime}(x)<0$ when $3-\frac{x}{E}<0$. In other words, $R^{\prime}(x)$ is increasing for $0 \leq x<3 E$ and decreasing for $x>3 E$.

4 Long-form answers

[7] a. Write down two equations in the two unknowns a, b expressing the statement: "the line tangent to $y=\sqrt{x}-\frac{1}{2}$ at the point where $x=a$ is also tangent to $y=x^{2}$ at the point where $x=b "$.
Since the derivative of $y=\sqrt{x}-1$ is $\frac{1}{2 \sqrt{x}}$, the line tangent to that curve at $x=a$ has the slope $\frac{1}{2 \sqrt{a}}$ and hence the equation

$$
y=\frac{1}{2 \sqrt{a}}(x-a)+\left(\sqrt{a}-\frac{1}{2}\right)
$$

that is

$$
y=\frac{1}{2 \sqrt{a}} x+\left(\frac{\sqrt{a}}{2}-\frac{1}{2}\right)
$$

Since the derivative of $y=x^{2}$ is $2 x$, the line tangent to that curve at $x=b$ has the equation

$$
y=2 b(x-b)+b^{2}
$$

that is

$$
y=2 b \cdot x-b^{2}
$$

Now if both equations describe the same line we must have

$$
\left\{\begin{array}{l}
2 b=\frac{1}{2 \sqrt{a}} \\
\frac{\sqrt{a}}{2}-\frac{1}{2}=-b^{2}
\end{array}\right.
$$

[1] b. Solve the system of equations you have written down.
Multiplying the second equation by $8 b$ we find:

$$
4 \sqrt{a} b-4 b=-8 b^{3}
$$

From the first equation we have $4 \sqrt{a} b=1$ so

$$
(2 b)^{3}-2(2 b)+1=0
$$

In terms of $c=2 b$ this reads

$$
c^{3}-2 c+1=0
$$

Given any solution c to the last equation, it is clear that setting $b=\frac{c}{2}$ and $a=\left(\frac{1}{2 c}\right)^{2}$ will give a solution to the original system as long as b comes out positive (so that $b=\frac{1}{4 \sqrt{a}}$ rather than its negative), so it is enough to solve the last equation. By inspection we find the solution $c=1$; since $c^{3}-2 c+1=(c-1)\left(c^{2}+c-1\right)$ there are also the solutions $\frac{-1 \pm \sqrt{5}}{2}$. As we said c must be non-negative since $c=2 b=\frac{1}{2 \sqrt{a}}$ so the two possibilities are $c=1$ and $c=\frac{\sqrt{5}-1}{2}$ which translate to $\left(a=\frac{1}{4}, b=\frac{1}{2}\right)$ and $\left(a=\frac{1}{(\sqrt{5}-1)^{2}}, b=\frac{\sqrt{5}-1}{4}\right)$.

