Math 100 §105, Fall Term 2010 Sample midterm Exam

October $4^{\text {th }}, 2010$

Student number:

LAST name:

First name:

Instructions

- Do not turn this page over. You will have 45 minutes for the exam.
- You may not use books, notes or electronic devices of any kind.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you are using a result from the textbook, the lectures or the problem sets, state it properly.

Signature:

1	$/ 18$
2	$/ 8$
3	$/ 6$
4	$/ 8$
Total	$/ 40$

1 Short-form answers

Show your work and clearly delineate your final answer. Not all problems are of equal difficulty.
[3] a. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow-2} \frac{x^{2}-4}{x^{2}+2 x+1}
$$

[3] b. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}
$$

[3] c. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow \infty} \frac{x \cos x}{x^{2}+1}
$$

[3] d. Differentiate the following function:

$$
\tan \left(e^{x / 2}\right)
$$

[3] e. Given $f(1)=1, f^{\prime}(1)=2, g(1)=3, g^{\prime}(1)=4$ evaluate $h^{\prime}(1)$ where

$$
h(x)=\frac{x g^{2}(x)}{f(x)}
$$

[3] f. Evaluate the following limit (or show it does not exist):

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos x}}{x}
$$

2 Long-form answers

[4] a. Let $f(x)=\frac{x}{x-1}$. Find $f^{\prime}(x)$ using the definition of the derivative. No marks will be given for use of differentiation rules.
[4] b. Show that the equation $\cos x=x$ has a solution.

3 Long-form answers

A reaction occurs at the rate $R(x)=A x^{3} e^{-x / E}$ where x is the energy of the incoming particles, E is a constant energy scale, and A is an overall constant.
[4] a. Find the range of energies $x \geq 0$ for which a small increase in the energy will increase the rate of the reaction.
[2] b. Find the range of energies $x \geq 0$ for which a small increase in the energy will decrease the rate of the reaction. Your answers may depend on the constants A and E. Don't forget to justify them!

4 Long-form answers

[7] a. Write down two equations in the two unknowns a, b expressing the statement: "the line tangent to $y=\sqrt{x}-1$ at the point where $x=a$ is also tangent to $y=x^{2}$ at the point where $x=b$ ".
[1] b. Solve the system of equations you have written down.

