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CHAPTER 1

Introduction (9/9)

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

1.1. Introduction

Two main themes of number theory: study of individual numbers, solution of equations in the
integers.

1.1.1. Classical statements.

DEFINITION 1. Given an integer n set σ(n) = ∑d|n d. Call n deficient, perfect or abundant if
σ(n) is less than, equal to, or larger than, 2n, respectively.

EXAMPLE 2. 6, 28, 496, 8128 are perfect number.

CONJECTURE 3. There are infinitely many perfect numbers.

PROBLEM 4. Are there any odd perfect numbers?

1.1.2. Results of numbers theory – Diophantine approximation.

THEOREM 5. (Liouville 1847) α algebraic of degree d ≥ 2 then there exists c = c(α) > 0 such
that for all p,q ∈ Z with q 6= 0,

∣∣∣α− p
q

∣∣∣> c
qd .

(Roth 1955) For all irrational algebraic α and ε > 0 there exists c = c(α,ε) > 0 such that for
all p,q

∣∣∣α− p
q

∣∣∣> c
q2+ε

CONJECTURE 6. (Oppenheim) Let Q(x) be an indefinite quadratic form in d ≥ 3 variables
with real coefficients which is not a multiple of a form with rational coefficients. Then Q(Zd) is
dense.

Circle method: d ≥ 21 (Birch-Davenport-Ridout), d ≥ 5 (Davenport-Heilbronn). Ergodic the-
ory: Margulis.

CONJECTURE 7. (Littlewood) Let α,β be irrational. Then liminfn→∞ n‖nα‖‖nβ‖= 0.

Easy to check this holds for (Lebesgue-)almost all α,β .
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1.1.3. Results of numbers theory – prime numbers.

THEOREM 8. (Euler) There are infinitely many primes.
(Dirichlet) For (a,q) = 1 there are infinitely many primes p so that p≡ a(q).

PROOF. (Euler) For ℜ(s) > 1 consider the infinite product ζ (s) = ∏p (1− p−s)−1. It converges
absolutely uniformly in every half-plane ℜ(s) ≥ 1 + ε since ∑p p−ℜ(s) ≤ ∑n n−1−ε < ∞. Direct
calculation shows ζ (s) = ∑

∞
n=1 n−s. It follows that lims→1 ζ (s) = ∞ (at least on the real axis). But

if there were finitely many primes then ζ (s) would be continuous at s = 1. �

THEOREM 9. (Riemann) Under reasonable assumptions on the zeroes of ζ (s), #{p | p≤ x}=
x

logx + Õ(
√

x).
(de la Valee-Pussin; Hadamard) Unconditionally, #{p | p≤ x} ∼ x

logx .
(Chebotarev) ∑p≤x, p≡a(q) log p∼ 1

φ(q)
x

logx .

THEOREM 10. (Fermat) A prime p is a sum of two squares iff p≡ 3(4) (actually a statement
about primes in Z[i]).

1.1.4. Results of number theory – Diophantine equations. Linear equations:

CONJECTURE 11. (Goldbach 1742) For all even n≥ 4 the equation p1 + p2 = n has a solution
with pi prime.

THEOREM 12. (Vinogradov 1937) All sufficiently large odd n are sums of three primes.

Quadratic equations:

THEOREM 13. (Fermat) An integer n is a sum of two squares iff ...
(Legendre 1798 + Gauss) An integer is a sum of three squares iff ...
(Lagrange 1770) Every non-negative integer is the sum of four squares.
(Jacobi) r4(n) = ∑d|n,46|d d.
(Bhargava-Hanke) A positive-definite integral quadratic form represents every integer iff it

represents every integer up to 290.

More complicated equations

THEOREM 14. (Greeks) The equation x2 + y2 = z2 has infinitely many primitive solutions.
(Fermat) The equation x4 + y2 = z4 has no non-trivial solutions.
(Frey-Serre-Ribet, ”FLT”) For n≥ 3 there are no rational points on the curve xn + yn = 1.

General equations

CONJECTURE 15. (Waring 1770) For all k ≥ 1 there exists g(k) such that every n ≥ 0 is the
sum of at most g(k) kth powers.

Basically resolved by the circle method.

1.1.5. Discussion. Classical notions versus modern formulation. Congruences or equations in
Z/mZ?

1.2. Technical stuff

None really except for the notion of an abelian group.
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1.2.1. Course plan.
• Z/mZ.
• Prime numbers, arithmetical functions.
• Continued fractions and Diophantine approximation.
• Other topics

We will pay attention to the algorithmic complexity of some results.

1.3. Initial definitions (14/9) [1, §1.2]

1.3.1. The integers. Start with theory of the integers. Traditionally people worked with the
natural numbers.

DEFINITION 16. Say that a divides b (or that b is a multiple of a) and write a|b if there exists
c so that b = ac. Say that a is a unit if it divides 1.

For m ∈ Z write (m) or mZ for the set of multiples of m.

LEMMA 17. (divisibility)

• a|b implies a|bc for all c.
• a|b and a|c implies a|b+ c.
• For c 6= 0, we have a|b iff ca|cb.
• a|b implies |a| ≤ |b|. In particular, {±1} are the only units of Z.

The first two properties can be summarized as:(m) is closed under addition and under multiplica-
tion by arbitrary elements of Z. Non-empty subsets with this property are called ideals.

COROLLARY 18. The relation a ≡ b(m) defined by a− b ∈ (m) is an equivalence relation.
The relation is called congruence modulu m; the equivalence classes are called congruence (or
residue) classes modulu m. We write [a]m or a+mZ for the congruence class of a modulu m, and
Z/mZ for the set of equivalence classes.

REMARK 19. We say r is a residue of b modulu m if r≡ b(m). Classically one worked in terms
of residues. However, it is much better to think in terms of residue classes, identifying congruent
numbers. Exceptions will arise, especially for analytic number theory.

THEOREM 20. (Division with remainder) Let a,b ∈ Z with a 6= 0. Then there exist unique
q,r ∈ Z with 0≤ r < |a| such that

b = qa+ r .

PROOF. Let r be the least non-negative member of b+aZ (note that b+ |ab| ≥ 0). Then r < |a|
(else r− |a| would be a smaller non-negative member of the residue class). Then b− r ∈ aZ. If
qa + r = q′a + r′ then r− r′ ∈ (a), and if they are distinct it follows that |r− r′| ≥ |a|. It follows
that r = r′ and hence that q = q′. �

REMARK 21. Note that this gives an algorithmic prescription for finding q and r given a and b
by repeatedly subtracting a (or −a) from b so that the resulting number moves toward the range

COROLLARY 22. (Z is a PID) Let I ⊂ Z be an additive subgroup (in particular, an ideal).
Then I = (a) for some a ∈ Z≥0.
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PROOF. If I = (0) there is nothing to prove. Otherwise I has positive members. Letting a be
the least such member, we have (a)⊂ I by induction. Finally, write any b∈ I in the form b = qa+r
as above. Then r = b− qa ∈ I and 0 ≤ r < a. By the choice of a we conclude that r = 0, that is
b ∈ (a). �

DEFINITION 23. Let S ⊂ Z be finite and non-empty. Write gcd(S) for the greatest common
divisormax{a≥ 1 | ∀b ∈ S : a|b} (except that if S = {0} set gcd(S) = 0), lcm(S) for least common
multiple min{a > 0 | ∀b ∈ S : b|a} (except that if 0 ∈ S or S is unbounded set lcm(S) = 0).

We have defined the gcd multiplicatively.

DEFINITION 24. Write(S) for the ideal generated by S, that is ∩S⊂ICZI.

PROPOSITION 25. (S) =
{

∑s∈S f (s) · s | f : S→ Z, #
(
S\ f−1(0)

)
< ∞

}
. Also, (S) = (gcd(S)).

Finally, (lcm(S)) = ∩s∈S(s).

PROOF. The first assertion is clear. For the second, let a ∈ Z≥0 be such that (S) = (a). Then
every s ∈ S is a multiple of a, so that a≤ gcd(S). Conversely, by the first assertion every common
divisor of S divides every element of (S) and hencegcd(S)≤ a. Finally, the ideal ∩s∈S(s) is the set
of common multiples and the proof of the Corollary shows that its generator is its least positive
member (or zero if the ideal is trivial). �

COROLLARY 26. Every common divisor of S divides gcd(S); every common multiple of S is
divisible by lcm(S).

PROOF. Every common divisor of S divides every integer combination of elements of S, hence
every member of (S). The second assertion follows from �

NOTATION 27. We sometimes write (S) for the gcd of the set S rather than for the ideal gener-
ated by S. Using (S) for the gcd and [S] for the lcm is, in fact, the traditional notation.

DEFINITION 28. Call S⊂ Z relatively prime if (S) = (1).

LEMMA 29. (Euclid) Let a,b ∈ Z and write a = qb+ r for some q,r ∈ Z. Then (a,b) = (b,r),
and in particular (a,b) = (a−b,b).

ALGORITHM 30. (Euclid) Two versions: one using subtraction, the other using division with
remainder.

1.3.2. Z/mZ.

LEMMA 31. Setting 0m = [0]m, 1m = [1]m, [a]m + [b]m
def
= [a + b]m, [a]m · [b]m

def
= [ab]m makes

(Z/mZ,0m,1m,+, ·) into a ring. The map a 7→ [a]m is a ring homomorphism.

8



Math 437/537: Problem set 1 (due 16/9/09)

Euclid’s Algorithm

1. Find the gcd and lcm of 1728 and 496. Show a complete calculation by hand.

The Fibonacci sequence

2. Define numbers fn by f0 = 0, f1 = 1 and fn+1 = fn + fn−1 for all n ≥ 1. Show that fn ≤ 2n

for all n. Conclude that the formal power series F(x) = ∑
∞
n=0 fnxn has a positive radius of

convergence.

3. Show that F(x) = x
1−x−x2 (at least in the domain of convergence). Using the formula 1

1−αx =
∑

∞
n=0 αnxn find a closed-form expression for fn.

4. Show that ϕn
√

5
−1 < fn < ϕn

√
5
+1 where ϕ is the larger root of t2− t−1 = 0.

5. Show that Euclid’s algorithm for finding gcd(a,b) using divisions with remainder requires at
most logϕ(max{a,b}) divisions.

Divisibility

Only use results about divisibility for this section; do not invoke the notion of a prime.
6. (More gcd identities)

(a) Let a,b ∈ Z be relatively prime. Show that any divisor c of ab can be uniquely written in
the form c = a′b′ with a′|a, b′|b.

(b) Show that gcd(a,bc) = gcd(a,b) ·gcd(a,c) for any a,b,c ∈ Z with b,c relatively prime.
(c) Show that if gcd(a,b) = gcd(a,c) = 1 then gcd(a,bc) = 1.

7. Let x,a,b ∈ Z≥1.
(a) Show that gcd

(
xa−1,xb−1

)
= xgcd(a,b)−1.

(b) Find gcd
(
xa +1,xb +1

)
.

Algebra

8. Let A be a finite abelian group. For x ∈ A and d ∈ Z write d · x for the sum of d copies of x (or
−d copies of (−x) if d < 0).
(a) For an integer d show that A[d] = {x ∈ A | d · x = 0} is a subgroup.
(b) Show that ∑x∈A x = ∑x∈A[2] x.

9. For a prime p show that (p−1)!≡−1(p).
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Using the Gaussian Integers

For a complex number z = x + iy write z̄ for its complex conjugate x− iy, and Nz for its norm
zz̄ = x2 + y2. We will study the ring Z[i] = {a+bi | a,b ∈ Z}.
10. Show that Z[i] contains 0,1∈Cand is closed under addition and multiplication, in other words

that it is a subring of C. Establish the well-ordering principle of Z[i]: a non-empty subset
S⊂ Z[i] contains a ∈ S so that Na≤ Nb for all b ∈ S.

11. (Sums of two squares) Say that A ∈ Z is the sum of two squares if there exist a,b ∈ Z so that
a2 +b2 = A, that is if A ∈ {Nz | z ∈ Z[i]}.
(a) Show that z1 + z2 = z1 + z2 and z1 · z2 = z1 · z2 for all z1,z2 ∈C. Conclude that the norm is

multiplicative.
(b) Let A,B ∈ Z be each a sum of two squares. Show that AB is a sum of two squares.

12. (Euclidean property)
(a) Let a,b ∈ C with Nb ≥ Na > 0 and Nb > 1

2Na. Show that one of Re(ab), Im(ab) has
magnitude at least 1

2 |a|
2.

(b) Under the same assumptions as in part (a), show that there exists ε ∈ {±1,±i} such that
N(b− εa) < Nb.

(c) Show that for every a,b ∈ Z[i] with a 6= 0 there exist q,r ∈ Z[i] so that b = qa + r and
Nr < Na.

Unique factorization can fail!

13. Let Z[
√
−5] =

{
a+
√
−5b | a,b ∈ Z

}
.

(a) Show that N
(
a+
√
−5b

)
= a2 +5b2 satisfies N(z1z2) = Nz1 ·Nz2 for all z1,z2 ∈ Z[

√
−5].

Conclude that if z ∈ Z[
√
−5] is a unit (divides 1) then z ∈ {±1}.

Hint: Show that if z|1 then Nz|N1.
(b) Show that every z ∈ Z[

√
−5] can be written as a product of irreducibles.

(c) Show that 2 ·3 =
(
1+
√
−5
)(

1−
√
−5
)

in Z[
√
−5].

(d) Show that no z∈Z[
√
−5] has norm 2 or 3. Conclude that 2,3,

(
1+
√
−5
)
,
(
1−
√
−5
)

are
all irreducible there. Verify that no two are associates.
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1.4. Primes and unique factorization (16/9/09) [1, §1.3]

• Irreducibles and decomposition into irreducibles; examples of Z, Z[i], Z[
√
−5], Q[x].

• Euclid: Infinitely many irreducibles; this shows π(x)� log logx.
• Primes. Unique factorization. Invertibility modulu irreducibles implies that irreducibles

are prime. Unique factorization in Z, Z[i] but 2 ·3 = (1+
√
−5)(1−

√
−5).

1.5. Prime number estimates (16-20/11/09)

Idea: dyadic decomposition.

EXAMPLE 32. To estimate ∑n≤x
1
n note that

1
2
−o(1) =

y−1
2y
≤ ∑

y≤n≤2y

1
n
≤ y+1

y
= 1+o(1) .

Thus

∑
n≤x

1
n

=
log2 x

∑
j=0

∑
2− j−xx≤n≤2− jx

1
n

means
1
2

log2 x−C ≤ ∑
n≤x

1
n
≤ log2 x+C .

LEMMA 33. (Central binomial coefficients). We have 1
2n+14n ≤

(2n
n

)
≤ 4n

(1) 0≤ ordp
(2n

n

)
≤ logp 2n. In particular,

(2n
n

)
is an integer

(2) If p >
√

2n then ordp
(2n

n

)
≤ 1.

(3) If p > n then ordp
(2n

n

)
= 1.

(4) If 2n
3 < p≤ n then ordp

(2n
n

)
= 0 unless n = p = 2.

PROOF. We use 22n = (1 + 1)n = ∑
2n
k=0
(2n

k

)
. Setting k = n gives the upper bound. For the

lower bound note that the average of a sequence is at most the largest member.
For the rest, we use ordp(n!) = ∑

∞
j=1

⌊
n
p j

⌋
. Thus ordp

(2n
n

)
= ∑

∞
j=1

(⌊
2n
p j

⌋
−2
⌊

n
p j

⌋)
. This is

non-negative since each term is. In fact, 0≤
⌊

2n
p j

⌋
−2
⌊

n
p j

⌋
≤ 1. Summands with j > logp 2n don’t

contribute so ordp
(2n

n

)
≤ logp 2n, and if p >

√
2n then summands with j > 1 don’t contribute.

If p > n then p divides the numerator once and the denominator not at all. If 2n
3 < p ≤ n then

1 ≤ n
p < 3

2 and 2 ≤ 2n
p < 3 so the summand with j = 1 gives zero. The summand with j = 2

can only contribute if 2n
p2 ≥ 1 but 2n

p2 = 1
p

2n
p < 3

p . This can be at least one only if p = 2 and then

n≥ 2 > 2n
3 means 2≤ n < 3. �

DEFINITION 34. Set ν(x) = ∑p≤x log p, ψ(x) = ∑n≤x Λ(n) = ∑
∞
j=1 ν(x1/ j).

THEOREM 35. δx≤ ν(x)≤ ∆x where ∆≤ 2.18 and δ = 2log2
3 − 1

3 > 1
8 .
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PROOF. Given x set n =
⌊ x

2

⌋
. Then the Lemma shows ν(x)− ν(1

2x) ≤ log
(2n

n

)
+ logx ≤

x log2+ logx. We thus have:

ν(x) ≤ x log2
∞

∑
j=0

1
2 j +

log2 x
log2

≤ 2log2x+
log2 x
log2

≤ ∆x

since log2 x
x log2 ≤ 0.785 for all x≥ 1. Next, we have:

log
(

2n
n

)
≤ ν(x)−ν(

1
2

x)+ν(
1
3

x)+2
√

2n log2n .

It follows that

ν(x)−ν(
1
2

x)≥
(

log4− ∆

3

)
x−2

√
x logx−2log4 .

This immediately proves Bertrand’s Postulate: ν(2x)− ν(x) > 0 (at least for x large). This also
gives:

ν(x) ≥ 2
(

log4− ∆

3

)
x−2(2+

√
2)
√

x logx−4log2 2logx−3
(

log4− ∆

3

)
≥

�

1.6. Chinese Remainder Theorem (18/9/09) [1, §2.3]

• Primes: The Euler product for the Riemann zeta-function and Euler’s proof that there are
infinitely many primes. The PNT. The idea of local-to-global.
• Statement; formulation as an isomorphism of finite rings.
• Proof by induction on number of factors.
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Math 437/537: Problem set 2 (due 30/9/09)

Primes

1. Let a,b ∈ Z be positive and relatively prime. Show that ab is a perfect kth power iff both a and
b are.

2. (Sum of divisors) For a positive integer n write σ(n) = ∑d|n d for the sum of its positive divisors
(for example, σ(6) = 1+2+3+6 = 12).
(a) Let p be prime. Show that σ(pr) = pr+1−1

p−1 .
(b) Let a,b be relatively prime. Show that σ(ab) = σ(a)σ(b).

3. (Mersenne and Fermat primes)
(a) Let 2a−1 be prime. Show that a is prime.
(b) Let 2b +1 be prime. Show that b is a power of 2.

4. A positive integer n is called deficient, perfect, or abundant if σ(n) < 2n, σ(n) = 2n, or
σ(n) > 2n (for example, 6 = 3+2+1 is perfect).
(a) Show that 2a is deficient for all a≥ 1.
(b) Let m be odd, a≥ 1, and let n = 2am be an even perfect number. Show that 2a+1−1|m.

Hint: Use 2(b).
(c) Writing r = m

2a+1−1 show that
(
2a+1−1

)
(m+ r) = 2n. Conclude that the only positive

divisors of m are r,m.
(d) Show that every even perfect number is of the form 2p−1(2p−1) where p is a prime such

that 2p−1 is also a prime.

5. For a prime p and integer n fine the exponent e so that pe‖n! (read: pe divides n! exactly; that
is such that pe|n! but pe+1 6 |n!).

The Chinese Remainder Theorem

6. Call an integer n squarefree if it is not divisible by the square of a non-unit, that is if d2|n
implies d|1.
(a) Show that n is squarefree iff it is not divisible by the square of any prime.
(b) Given r≥ 1 show that there exists n≥ 1 so that {n+ j}r

j=1 are all not squarefree. Conclude
that there are arbitrarily large gaps between square-free numbers.

7. Find the smallest positive integer x such that x≡ 5(12), x≡ 2(5) and x≡ 4(7) all hold simul-
taneously.

8. Which integers x satisfy 2x≡ 1(3), 3x≡ 2(5), 4x≡ 3(7), 7x≡ 6(13) simultaneously?
Hint: There is a simple solution!

9. For a non-zero integer n set φ(n) = |{1≤ d ≤ |n| | (d,n) = 1}| for the number of residue
classes mod n which are relatively prime to n. Let a,b be relatively prime. Show that
φ(ab) = φ(a)φ(b).

13



Congruences

10. Let (n,7) = 1. Show that 7|n12−1 directly (without using induction).

11. Let a,b be (separately) relatively prime to 91. Show that a12 ≡ b12 (91).

12. (Divisibility tests I) For an integer n define Sk;10(n) by the following procedure:
• Write n in base 10
• Divide the sequence of digits into blocks of length k, starting with the least significant

digit (the last block may be shorter).
• Sk;10(n) is the sum of the numbers whose decimal representations are the blocks.

(a) Show S1;10(n)≡ n(9), and explain how to use this to test whether an integer n is divisible
by 3.

(b) Show S6;10(n)≡ n(7), and explain how to use this to test whether an integer n is divisible
by 7.

13. (General divisibility test) Given a base b ≥ 2 and a number d relatively prime to b find k so
that Sk;b(n) ≡ n(d). Obtain a method to test whether numbers written in base b are divisible
by d.

14



CHAPTER 2

The multiplicative group

2.1. Application: solving x2 ≡−1(m) (21/9/09)

LEMMA 36. Let p be an odd prime, e ≥ 1. Then x2 ≡ 1(pe) has exactly the two solutions
x≡±1(pe).

PROOF. Since (x+1,x−1) = (2,x + 1), pe | (x− 1)(x + 1) implies pe | (x− 1) or pe|(x +
1). �

LEMMA 37. The solutions to x2 ≡ 1(2e) are:
{
±1,2e−1±1

}
if e ≥ 3, {±1} if e = 2, {1} if

e = 1.

PROOF. The analysis above shows that if x 6≡ ±1 then either 2e−1|(x−1) and 2|(x +1) or the
reverse. �

COROLLARY 38. x2 ≡ 1(m) has 2a solutions, where a = ω(n)+


1 v2(n)≥ 3
0 v2(n) = 2,0
−1 v2(n) = 1

.

2.2. The Multiplicative group (Z/mZ)×

• (23/9/09) Euler function; Multiplicativity of Euler function via CRT.
• Order; divisibility; Euler generalization of Little Fermat.
• (25/9/09) Cyclic subgroups of (Z/mZ)× and primitive roots.
• Cannot have primitive root unless m = pe or 2pe with p odd, or if m = 4. State that this is

sufficient.
• Fermat’s Little Theorem implies thatx2 ≡−1(p) has no solutions for p≡ 3(4). We will

work on a converse.

2.3. Z/pZ (30/09/10) [1, §2.7]

Z/pZ is a field; Z/pZ[x] is a PID; xp− x factors completely there. Conclude that any divisor
factors completely there. In particular, xd−1 for d|p−1.

Primitive roots: if qe‖p−1 then there are qe−qe−1 elements of order qe. By CRT get element
of order p−1, that is a primitive root.(

−1
p

)
by studying elements of order 4.
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Math 437/537: Problem set 3 (due 16/10/09)

Euler function

1. Find all solutions in positive integers to φ(x) = 24.

2. For each n≥ 1 show that there are finitely many solutions to φ(x) = n.

3. Let f ∈Z[x] be a polynomial with integer coefficients. For m∈Z≥1 let N f (m) denote the num-
ber of solutions in Z/mZ to the congruence f (x)≡ 0(m). Let φ f (m)= |{a ∈ Z/mZ | ( f (a),m) = 1}|.
(a) Show that φ f is multiplicative, that is that φ f (nm) = φ f (n)φ f (m) whenever (m,n) = 1.
(b) For p prime and e≥ 1 find φ f (pe) in terms of φ f (p).
(c) For p prime show that φ f (p)+N f (p) = p.

(d) Show that φ f (n)
n = ∏p|n

(
1− N f (p)

p

)
for all n.

Multiplicative groups

4. Let m≥ 1 and let a,b ∈ (Z/mZ)× have orders r,s respectively. Let t be the order of ab. Show:
rs

(r,s)2

∣∣∣t and t
∣∣∣ rs
(r,s)

.

5. Let p be a prime. How many solutions are there to x4− x2 +1 = 0 in Z/pZ?
Hint: Factor x12−1 in Z[x].

Primality Testing I - Carmichael numbers

We’d like to determine whether a given m ∈ Z≥1 is prime. For this we generate a ∈ Z/mZ
(represented as integers in the range 0≤ m−1) and test their multiplicative properties mod m.

6. Assume that our calculations produce some power ak with
(
ak,m

)
> 1 (perhaps k = 1!). Ex-

plain why this resolves the question about m.

We will therefore implicitly assume from now on that (a,m) = 1. Our first attempt will be to
generate numbers a ∈ (Z/mZ)× and check whether am−1 ≡ 1(m).

7. Show that if (a,561) = 1 then a560 ≡ 1(561) yet that 561 is composite.
Hint: use the Chinese Remainder Theorem.

8. Let p be a prime and assume p2|m. Show that (Z/mZ)× contains an element of order p, and
conclude that there exists a ∈ (Z/mZ)× such that am−1 6≡ 1(m).

DEFINITION. Call a composite number m a Carmichael number if the statement of Fermat’s
little Theorem holds modulu m, that is if for any a relatively prime to m one has am−1 ≡ 1(m).

9. (Korselt’s criterion) Show that m is a Carmichael number iff it is square-free, and for every
p|m one has (p−1)|(m−1).

10. Find all Carmichael numbers of the form 3pq where 3 < p < q are primes.
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Primality Testing II - the Miller-Rabin test.

From now on we assume that m an odd number and write m−1 = 2en with n odd. Let f ≤ e−1
be maximal such that there exists x ∈ (Z/mZ)× with xn2 f

=−1. Write s = n2 f and set

B =
{

a ∈ (Z/mZ)× | an ≡ 1(m) or ∃0≤ j < e : an2 j
≡−1(m)

}
,

B′ =
{

a ∈ (Z/mZ)× | as ≡±1(m)
}

,

B′′ =
{

a ∈ (Z/mZ)× | am−1 ≡ 1(m)
}

.

11. Show that B⊂ B′ ⊂ B′′, and that B′ and B′′ are closed under multiplication.

12. Let m be prime. Show that B = (Z/mZ)×.
Hint: If an 6= 1 let b j = a2 jn. Then b j+1 = b2

j and be = 1.

13. Assume that m is composite and that B′ = (Z/mZ)×.
(a) Show that there exists relatively prime m1,m2 > 2 such that m = m1m2.

Hint: consider B′′.
(b) Let x ∈ Z satisfy xs ≡ −1(m). Show that there exists y ∈ Z such that ys ≡ −1(m1) but

ys ≡ 1(m2) and conclude that B′ is a proper subset.

14. Assume that m is composite. Show that b ∈ (Z/mZ)× \B′ implies bB′∩B′ = /0 and conclude
that |B| ≤ |B′| ≤ 1

2

∣∣(Z/mZ)×
∣∣.

ALGORITHM. (Rabin) Input: an integer m≥ 2.
(1) If m is even, output “prime” if m = 2, “composite” otherwise and stop. If m is odd,

continue.
(2) Repeat the following k times (k is fixed in advance):

(a) Generate a ∈ {1, . . . ,m−1}, uniformly at random.
(b) If (a,m) > 1, output “composite” and stop.
(c) Check whether a ∈ B. If not, output “composite” and stop.

(3) Output “prime”.

15. (Primality testing is in BPP)
(a) Show that if m is prime, the algorithm always output “prime”.
(b) Show that if m is composite, the algorithm outputs “s with probability at least 1− 1

2k .

OPTIONAL Find c so that the algorithm runs in time O(k(log2 m)c).
Hint: Given 1 ≤ a ≤ m− 1 efficiently calculate a,a2,a4,a8,a16, . . . and use that to calculate
an( mod m) in time polynomial in logn and logm.

REMARK. There exist infinitely many Carmichael numbers; see the paper of Alford, Granville
and Pomerance, Annals of Math. (2) v. 140 (1994).
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2.4. Z/pkZ (2/10/09) [1, §2.8]

• If g is a primitive root mod p and gp−1≡ 1(p2) then (g+ p)p−1 = gp−1+(p−1)gp−2 p+
O(p2)≡ 1−gp−2 p+O(p2). Now gp−2 is not divisible by p so this isn’t 1 mod (p2). If
g is a primitive root mod pk, k≥ 2, assume gpk−2(p−1) = 1+t pk−1 with (t, p) = 1. Raising
to pth power we find

gpk−1(p−1) = 1+ t pk +O(pk+1) ,

that is g has order pk(p−1) in Z/pk+1Z.
• Reformulation of proof: Set Ur =

{
a ∈

(
Z/pkZ

)× | a≡ 1(pr)
}

, kernel of map to (Z/prZ)×.

Then Ur is cyclic of order pk−r (if p = 2 need r ≥ 2). For this assume p ≥ 3,r ≥ 1 or
p = 2 and r ≥ 2, and let α ∈ Ur \Ur+1 so α = 1 + upr, 0 < u < p− 1. Then α p =
1 + upr+1 + ∑

p−1
k=2

(p
k

)
uk pkr + up ppr or α2 = 1 + u2r+1 + u222r. Now if p is odd then

pr ≥ 3r ≥ r + 2 and for 2 ≤ k < p kr ≥ r + 1 while p |
(p

k

)
. If p = 2, 2r+2|22r as

long as r ≥ 2. We conclude α p ∈ Ur+1 \Ur+2. Finally, choose α ∈ Ur \Ur+1 . Then
α pk−r−1 ∈Uk−1 \Uk so α has order pk−r.
• When p = 2 no more to say. when p odd take primitive root β mod p. Then some power

β ′ of β has order p−1 modulu pk and then αβ ′ is a primitive root.

2.5. Diffie-Hellman (1976) & Rivest-Shamir-Adelman (1978)

• Need to share secrets without pre-shared secrets
• One-time-pad by courier
• Alice & Bob, Eve
• Based on functions which are easy to compute, hard to invert.
• We will rely on the functions x 7→ xa and a 7→ xa modulu m.

2.5.1. DH.
• Take a finite abelian group A and g ∈ A. Alice sends ga, Bob sends gb. Both compute gab.
• Most cases A = (Z/mZ)× but other groups used (e.g. Elliptic curves). Why not Zm?
• Best if g is an element of large order. Best if order is prime – if product of many small

divisors then efficient heuristic algorithms work.
• Practical: let p be a prime such that m = 2p + 1 is prime too. Then ϕ(m) = 2p, so any

g ∈ (Z/mZ)× has order 2, p or 2p. Best to use g of order p (otherwise can tell the lower
bit of a depending on whether ga is a square).
• Sophie Germaine; SG primes and application to FLT.

2.5.2. RSA.
• Full cryptographic scheme, including encryption, decryption and authentication (digital

signatures).
• Asymmetric: Bob transmits to Alice.
• Alice:

– Generates two large primes p,q and sets m = pq. She computes ϕ(m) = (p−1)(q−
1).
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– We will work in (Z/mZ)×. Note that knowing both m and ϕ(m) is equivalent to
knowing p,q.

– Chooses an exponent e and finds d so that de≡ 1(ϕ(m)).
– Publishes (m,e) (“public key”). Keeps (m,d) (“private key”) secret.

• Algorithm
– Bob wants to send a message a ∈ (Z/mZ)×.
– He calculates b = E(a) = ae ( mod m) and sends this to Alice.
– Alice calculates D(b) = bd . By Euler’s Theorem aed = a ·aed−1 ≡ a(m) so D(b) =

D(E(a)) = a.
• Note that E(D(a)) = a as well. This allows Alice to securely sign messages:

– Alice creates a message a she wants to send. She creates the pair a′ = (a,DA(a)).
– Anyone can verify that it was Alice that created the message by verifying that EA(DA(a))=

a (note that anyone can calculate EA).
– No-one can forge messages except by breaking the scheme.
– Perhaps Alice sends the message securely, by sending Bob EB(a′).
– Alice can prove her identity this way by advertising (a,DA(a)) for a random a.
– Alice’s public key may be stored by a central authority.
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CHAPTER 3

Polynomial equations

3.1. Hensel’s Lemma (7/10/09, 9/10/09) [1, §2.6]

EXAMPLE 39.
√

1+ x in R[x]. Set f0(x) = 1.
• Try f1(x) = 1+ax. Then f 2

1 = 1+2ax+a2x2 = 1+2ax+O(x2) so try a = 1
2 .

• Try f2(x) = 1+ 1
2x+bx2. Then f2(x)2 = 1+ x+(2b+ 1

4)x2 +O(x3) so try b =−1
8 .

• Say fk(x) has degree k, f 2
k (x) = 1+ x+O(xk+1). Try fk+1(x) = fk(x)+ak+1xk+1. Since(

fk(x)+ak+1xk+1
)2

= f 2
k +2ak+1xk+1 +O(xk+2)

we can choose ak+1 to make f 2
k+1 = 1+ x+O(xk+1) as long as 2 is invertible.

REMARK 40. Argument actually lives in R[[x]] and its quotients R[[x]]/(xk+1) = R[x]/(xk+1).

Same phenomenon in Z/pkZ.

DEFINITION 41. Let f = ∑
n
i=0 aixi ∈R[x]. The formal derivative of f is the polynomial f ′(x) =

∑
n
i=1 iaixi−1.

LEMMA 42. Let f ∈ Z[x]. Then f (x+h) = f (x)+h f ′(x)+h2Q(x,h) in R[x,h].

PROOF. Write the claim as f (x + h)− f (x)−h f ′(x) ∈ h2R[x,h]. This is clearly linear in f so
enough to prove for f (x) = xn, where (x+h)n−xn = nhxn−1 +O(h2) by the binomial theorem. �

LEMMA 43. Let f ∈ Z[x] and let ak ∈ Z be such that f (a) ≡ 0(pk) and f ′(a) 6≡ 0(p). Then
∃!b ∈ Z/pk+1Z such that b≡ a(pk) and f (b)≡ 0(pk+1), given by b = a− f (a)

f ′(a) .

PROOF. We have f (a+t pk)= f (a)+t pk f ′(a)+O(p2k)= pk
(

f (a)
pk + t f ′(a)

)
+O(pk+1). Thus,

f (a+t pk)≡ 0(pk+1) iff t f ′(a)+ f (a)
pk ≡ 0(p). This clearly has the unique solution. In fact, if u∈Z

is chosen such that u f ′(a)≡ 1(p) it is clear we must take b = a−u f (a). �

COROLLARY 44. Let f ∈ Z[x], a1 ∈ Z/pZ such that f (a1) = 0, f ′(a1) 6= 0 in Z/pZ. Then for
each k ≥ 1 there is a unique ak ∈ Z/pkZ so that f (ak) = 0 and ak ≡ a1 (p).

PROOF. Fix u ∈ Z so that ua1 ≡ 1(p), set ak+1 = ak−u f (ak). Note that all the ak are congru-
ence modulu p so the same u works for all of them. �

REMARK 45. Two things:

(1) Note that this is similar Newton’s method: an+1 = an− f (an)
f ′(an)

. In fact, choosing the inverse

in Z/pkZ instead of Z/pZ gives quadratic convergence.
(2) Note that the same proof would work if we replaced Z/pkZ with F [y]/(yk) for a field F .
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What if f ′ vanishes too? This is an indication of a multiple root.

DEFINITION 46. Call a ∈ Z/pZ such that f (a) = 0 a regular root if f ′(a) 6= 0, a singular root
if f ′(a) = 0.

THEOREM 47. (Hensel’s Lemma) Let f ∈Z[x]. Let a1 ∈Z be such that pr‖ f ′(a1) and f (a1)≡
0(p2r+1). Then for each k there exists ak ∈ Z, unique mod pr+k such that ak ≡ a1 (pr+1) and
f (ak)≡ 0(p2r+k).

PROOF. We note first that f ′(a + t pk) ≡ f ′(a)(pk) so if k > r, pr‖ f ′(a + t pk) no matter what
t is. It follows that the same induction scheme will work: for some k > r we will assume that
f (a) ≡ 0(pk+r) and produce t ∈ Z, unique mod p, so that f (a + t pk) ≡ 0(pk+1+r). Indeed,
f (a+ t pk)≡ f (a)+ t pk f ′(a)(p2k). Dividing by pk+r (note that pk+r|p2k) we have

f (a+ t pk)
pk+r ≡ f (a)

pk+r + t
f ′(a)

pr (pk−r) .

Since k− r≥ 1, we have pk+1+r | f (a+ t pk) iff f (a)
pk + t f ′(a)

pr ≡ 0(p). By assumption, f ′(a)
pr is prime

to p, so the congruence has a unique solution mod p. �

EXAMPLE 48. f (x) = x2 + x+7.
• mod 3 we are considering x2 + x + 1 = (x− 1)2, so the unique root is x = 1 and it is

singular. f (1) = 32 while f ′(1) = 3. In fact, since 9| f (1) we know that every a ∈ Z/9Z
such that a≡ 1(3) will be a root.
• mod 9 we have f (1) = 9, f (4) = 27, f (−2) = 9.
• It follows that any root in Z/27Z is congruent to 4 mod 9. f (4) = 27, f (13) = 189 =

27 ·7, f (−5) = 27. None is divisible by 81 so there are no zeroes in Z/81Z.
• By completing the square, if m is odd then there is a zero mod m iff −27 is a square

mod m. If m|27 then −27 ≡ 0(m) so it is a square, but after it is not since it is divisible
by an odd power of 3.

EXAMPLE 49. f (x) = x2 + x+223.

• mod 3 this is x2 + x+1 and has the unique root x = 1, also f (1) = 225 = 9 ·25.
• mod 9 we have f (4) = 243 = 35 and f (−2) = 225 = 9 ·25.
• It follows that every zero mod 27 is ≡ 4(9). Since f ′(4) = 9 = 32, it follows that for

every k ≥ 3 there is a unique solution in Z/pkZ, congruence to 4
• −891 = −81 ∗ 11 hence this is a square mod m iff −11 is a square mod m. Indeed
−11≡ 1(3).
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Math 437/537: Problem set 4 (due 28/10/09)

Some polynomials

1. Let f (x) = ∑
n
i=0 aixi ∈ Z[x] be a polynomial with integer coefficients of degree n ≥ 1, and let

r = p
q ∈Q be a rational number with (p,q) = 1. Assume that f (r) = 0.

(a) Show that p|a0 and q|an.
(b) Conclude that if an = 1 ( f is monic) then r ∈ Z.

2. Let g(x) = x6−53x4 +680x2−1156 = (x2−2)(x2−17)(x2−34). Show that g(x) = 0 has solutions
in the real numbers and in Z/mZ for all m, but that g(x) = 0 has no solutions in the rational
numbers.

DEFINITION. Call f ∈ Z[x] homogeneous of degree r (or a form) if every monomial appearing
in f has total degree r. Call a ∈ Zn primitive if gcd(a1, . . . ,an) = 1.

3. Let f be a form in n variables. Show that Vf (Z) =
⋃

d≥1

(
dV ′f (Z)

)
where V ′f (Z) is the set of

primitive solutions to the equations f = 0.

4. Find all integral solutions to the following equations (Hint: reduce mod m for suitably chosen
m).
(a) x2 + y2 = 9z+3.
(b) x2 +2y2 = 8z+5.
(c) x2 + y2 + z2 = 2xyz.
(d) x4 + y4 + z4 = 5x2yz.
(e) x4 +2x3 +2x2 +2x+5 = y2

5. (Rational points)
(a) Let f ∈ Q[x,y] be a cubic and let g ∈ Q[x,y] be linear and non-constant. Obtain a corre-

spondence between Vf (Q)∩Vg(Q) and the roots of a polynomial of degree at most 3 with
rational coefficient, and conclude that this set, if finite, has size at most 3.

OPTIONAL Explain why the set cannot have size 2, if we count zeroes with multiplicity and
include points at infinity.
From now on let f (x,y) = x3 +2x2− y2. We will find Vf (Q)⊂Q2.

(b) Let g be a linear polynomial so that (0,0) ∈Vg(Q). Show that Vf (Q)∩Vg(Q) contains at
most one more point.

(c) Find all Q-rational points on Vf .
(d) Given ε > 0, show how to find a rational point (x,y) ∈Vf (Q) with 0 < |x| , |y|< ε .
(e) Exhibit specific x,y ∈Q such that y2 = x3 +2x2 and 0 < |x| , |y|< 1

1000 .

Using Z[i]

6. (The issue at 2)
(a) Let w ∈ Z[i] divide 2. Show that w is associate to one of 1,π,π2 where π = 1+ i.
(b) Let x,y ∈ Z be relatively prime, and let z = x+ iy ∈ Z[i]. Show that (z, z̄) divides 2 in Z[i].

Conclude that (z, z̄) = π if x,y are both odd, (z, z̄) = 1 otherwise.
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(c) Now take any x,y ∈ Z. Show that (x+ iy,x− iy) = (x,y) ·

{
π

x
(x,y) ,

y
(x,y) both odd

1 otherwise
.

7. Let x,y ∈ Z satisfy y2 = x3−1.
(a) Show that y is even and x is odd.

Hint: reduce the equation modulu 4.
(b) Let z = 1+ iy ∈ Z[i]. Show that zz̄ is a cube in Z[i] and that (z, z̄) = 1 there. Conclude that

there exists w ∈ Z[i] and ε ∈ Z[i]× = {±1,±i} such that z = ε ·w3.
(c) Examining the real and imaginary parts of the resulting identity, show that x = 1, y = 0 is

the only solution.

8. Let (x,y,z) ∈ Z3 be primitive and satisfy x2 + y2 = z2.
(a) Show that x,y have different parities. WLG we’ll assume that x is odd, y is even.
(b) Show that x + iy ∈ Z[i] has the form ε(m + in)2 for some relatively prime m,n ∈ Z and

ε ∈ Z[i]×.
(c) Conclude that (x,y,z) =

(
m2−n2,2mn,m2 +n2).

- Note how the choice of root of unity corresponds to the choice of which of x,y is even.

Sums of two squares

9. Let r2(n) = #
{
(a,b) ∈ Z2 | a2 +b2 = n

}
and set s(n) = 1

4r2(n).
(a) Show that s(n) is integral and multiplicative.

Hint: Adapt problem 6(a) from PS1 to Z[i].
(b) For k ≥ 1, and primes p≡ 1(4) and q≡ 3(4) show that s(2k) = 1, s(pk) = k +1, s(qk) ={

1 k ≡ 0(2)
0 k ≡ 1(2)

.

(c) Find the smallest integer n so that r2(n) = 60.

10. Define a function χ4 : Z≥1→{0,±1} by setting χ4(n) =


1 n≡ 1(4)
−1 n≡ 3(4)
0 2|n

.

(a) Show that χ4(ab) = χ4(a)χ4(b) for all a,b ∈ Z.
(b) Show that n 7→ ∑d|n χ4(d) is multiplicative.
(c) show that s(n) = ∑d|n χ4(d) for prime powers n.
(d) Show that r2(n) = 4∑d|n χ4(d) for all n.

Some arithmetic

11. The most recently discovered perfect number is N = 2p−1(2p−1), where p = 42,643,801.
Determine how many digits N has, and find the first three digits (on the left) and the last
three digits (on the right). You may use the equivalent of an abacus (e.g. a simple electronic
calculator) to do the arithmetic, but not the equivalent of a general-purpose computer – for
example do not evaluate N directly!
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Roots of unity

Let e(x) = e2πix. For an integer m Let ζm = e( 1
m), ζ k

m = e
( k

m

)
. Let µm =

{
ζ k

m
}

k∈Z ⊂ C.
12. Show that µm is the set of solutions to zm = 1 in C, and that it is closed under multiplication.

Show that the map k 7→ ζ k
m induces a bijection Z/mZ→ µm mapping addition to multiplication.

Fixing k, show that µm =
{

ζ
k j
m

}
j∈Z

iff (k,m) = 1. In that case we call ζ k
m a primitive root of

unity of order m.

13. Given f : Z/mZ→ C and j ∈ Z/mZ set f̂ (k) = ∑ j(m) f ( j)ζ− jk
m = ∑a(m) f (a)e(ak

m ). We call f̂
the Discrete Fourier Transform of f .
(a) Show that ∑k(m) ζ

k j
m = mδ j,0.

(b) Show that ˆ̂f (k) = f (−k) (“Fourier inversion”).
(c) Show that ∑ j(m) | f ( j)|2 = 1

m ∑k(m)
∣∣ f̂ (k)∣∣2 (“Parseval’s identity”).
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3.2. Various equations (12-16/10)

3.2.1. For which primes p are there a,b ∈ Z so that a2 +b2 = p?
(1) 12 +12 = 2, so from now on assume p is odd.
(2) If p | a2 +b2 and a,b are not divisible by p then −1 is a square mod p hence p≡ 1(4).
(3) If p ≡ 1(4) then there exists a such that a2 ≡ −1(p). It follows that p|(1 + ia)(1− ia)

in Z[i]. Since p divides neither, it is not a prime. Say p = zw with z,w ∈ Z[i] non-units.
Then p2 = N p = NzNw since Nz,Nw 6= 1 it follows that Nz = p.

(4) Alternative: Let z be a prime divisor of p. By symmetry the same holds for z̄, and they are
not associates: z

z̄ = z2

N(z) = x2−y2

x2+y2 + 2xy
x2+y2 i, and x2−y2

x2+y2 ∈ Z only if x = 0 or y = 0 or x2 = y2.
Neither of z, z̄ is associate to an element of Z since p is prime there, neither is associate to
1 + i since (1± i)2 = ±2i would divide p2 but p is odd. It follows that zz̄|p in Z[i] so in
Z. It follows that Nz|p. Since it’s not 1 it equals p and we are done.

THEOREM 50. (Fermat) The equation x2 + y2 = p has a solution iff p = 2 or p≡ 1(4).

Alternative proof:
Let m be minimal so that there exist x,y with x2 + y2 = mp. m < p since we have 0 < a < p

with 1+a2 ≡ 0(p). Assuming m > 1 take a≡ x(m) and b≡ y(m) with |a| , |b| ≤ m
2 . We then have:

ay−bx≡ xy− yx≡ 0(m)

and

ax+by≡ x2 + y2 ≡ 0(m) .

Consider now(
ay−bx

m

)2

+
(

ax+by
m

)2

=
a2y2 +b2x2 +a2x2 +b2y2

m2 =
(

a2 +b2

m

)(
x2 + y2

m

)
.

We have x2+y2

m = p and m′ = a2+b2

m ≤ 1
4m + 1

4m = 1
2m < m. It follows that m′p is a sum of two

squares with m′ < m, a contradiction.

3.2.2. For which n are there a,b ∈ Z so that a2 +b2 = n?

LEMMA 51. n = 2e
∏i p fi

i ∏q2g j
j with pi ≡ 1(4) and qi ≡ 3(4) is sufficient.

PROOF. Enough to check for 2, pi, and q2
j . �

THEOREM 52. (Fermat) The condition is necessary and sufficient.

PROOF. Let a2 + b2 = n and let q ≡ 3(4) divide n. Assume that q - a let ā be an inverse to a
modulu q. This would imply (āb)2 ≡−1(q), contradicting q ≡ 3(4). Thus q|a, q|b which means

q2|n and
(

a
q

)2
+
(

b
q

)2
= n

q2 . We are now done by induction. �

3.2.3. Solve y2 = x3 +1 in Z.
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3.2.4. Solve y2 = x3− 1 in Z. Assume first that y is odd. Then y2 + 1 ≡ 2(4) while x3 is
divisible by 8 since x is even. It follows that y is even. Next, any common divisor of 1+ iy, 1− iy
in Z[i] divides 2. But 1+iy

1+i = (1+iy)(1−i)
2 = 1+y+(y−1)i

2 which is not integral if y is even. By unique
factorization we see that 1+ iy is associate to a cube. Say

1+ iy = ε(a+bi)3 .

Taking real parts we find either:
1 =±(a3−3ab2)

or
1 =±(b3−3a2b) ,

which we treat symmetrically. In the first case we have a = ±1 (it divides 1) and 3b2− 1 = ±1.
This is only possible if b = 0. So we have 1+ iy =±1, that is y = 0.

THEOREM 53. The only solution to y2 = x3−1 in Z2 is (1,0).

EXERCISE 54. Consider y2 = xp−b2 where p is an odd prime and b is odd.
Again y must be even due to Z/4Z.

3.2.5. Solve x2 + y2 = z2 in Z. Enough to consider positive primitive solutions. Say x,z odd
and y even. Then

y2

4
=

z− x
2
· z+ x

2
and the two are relatively prime. Thus there exist relatively prime m,n > 0 so that z− x = 2m2,
z + x = 2n2. Then z = m2 + n2, x = m2− n2, y = 2mn. Conversely, if (m,n) = 1 then x,y,z is a
primitive solution.

3.2.6. Solve x4− y4 = z2 in Z. If p|(x,y,z) then p4|z2 so enough to consider primitive solu-
tions.

If x,y are odd then z is even and x4 = z2 + y4 so there exist m,n so that z = 2mn, y2 = m2−n2,
x2 = m2 +n2 so x2y2 = m4−n4. Furthermore, m < x – contradiction. If x,y have different parities
there exist m,n so that m2 = x2 +y2 and n2 = x2−y2. Let u = m−n

2 , v = m+n
2 . Then u,v are relatively

prime and 2uv = y2. Say v is even (so v
2 and u are squares). Then u2 + v2 = x2 from there exist

k, l so that u = k2− l2, v = 2kl, x = k2 + l2. From v
2 = kl conclude that k, l are squares and then

u = k2− l2 is a smaller solution.
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CHAPTER 4

Quadratic reciprocity

4.1. Quadratic Residues (19/10)

The multiplicative group; power residues. Residues and non-residues; number of residues.
Legendre symbol.

THEOREM 55. (Euler) Let p be an odd prime, and let a,b ∈ Z. Then
(

a
p

)
≡ a

p−1
2 (p). In

particular:

(1) If a≡ b(p) then
(

a
p

)
=
(

b
p

)
.

(2)
(

ab
p

)
=
(

a
p

)(
b
p

)
(3)
(
−1
p

)
= (−1)

p−1
2 .

4.2. The Quadratic character of 2 (19/10)

Given a, would like to find the p so that
(

a
p

)
= 1. For a = −1 know that

(
a
p

)
depends on

residue class of p mod 4. We now calculate
(

2
p

)
.

THEOREM 56. Let p be an odd prime. Then
(

2
p

)
= (−1)

p2−1
8 .

PROOF. Would like to evaluate 2
p−1

2 . For this we need a good square root of 2, and notice that
(1+ i)2 = 2i in Z[i]. It follows that

(1+ i)p−1 = (2i)
p−1

2 = 2
p−1

2 i
p−1

2

so (
2
p

)
≡ i−

p−1
2 (1+ i)p−1 (p) .

Multiplying by (1+ i) and using (a+b)p ≡ ap +bp we have:

(1+ i)
(

2
p

)
≡ i−

p−1
2 (1+ ip) (p) .

Multiplying by (1− i) we have:

2
(

2
p

)
≡ i−

p−1
2 (1− i)(1+ ip)(p) .

We now evaluate the RHS, depending on the residue class of p mod 8.
p≡ 1(8) Then p−1

2 ≡ 0(4) and p≡ 1(4) so the RHS is (1− i)(1+ i) = 2.
p≡ 3(8) Then p−1

2 ≡ 1(4) and p≡ 3(4) so the RHS is (−i)(1− i)2 =−2.
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p≡ 5(8) Then p−1
2 ≡ 2(4) and p≡ 1(4) so the RHS is (−1)(1− i)(1+ i) =−2.

p≡ 7(8) Then p−1
2 ≡ 3(4) and p≡ 3(4) so the RHS is (i)(1− i)2 = 2.

Since 2 is invertible mod p we conclude(
2
p

)
≡ (−1)

p2−1
8 (p)

where the congruence is in Z[i]. Since both sides are ordinary integers it follows that

(
2
p

)
−(−1)

p2−1
8

p ∈
Z[i]∩Q = Z. It follows that the congruence holds in Z and since both sides are ±1 we must have
equality. �

4.3. The Gauss sum (21/10)

DEFINITION 57. A Dirichlet character mod m is a map χ : (Z/mZ)×→ C× zero-extended to
Z/mZ and pulled back to Z.

Write χ0 for the principal character χ0(a) =

{
1 (a,m) = 1
0 (a,m) > 1

. Write ε for the constant function

ε(n) = 1.

Let χ be a Dirichlet character mod p, let b ∈ Z/pZ. The Gauss sum is the Fourier transform

G(χ;b) = ∑
a(p)

χ(a)ζ ab
p = ∑

a(p)
χ(a)e(

ab
p

)

G(χ) = G(χ;1) .
For r ∈ (Z/pZ)× we have:

G(χ;rb) = ∑
a(p)

χ(a)ζ arb
p = χ(r)−1

∑
a(p)

χ(ar)ζ arb
m = χ(r)−1G(χ;b) .

LEMMA 58. Let p be prime, χ a non-trivial character.
(1) G(ε;0) = p; G(χ;0) = 0.
(2) G(ε) = 0; |G(χ)|2 = p.
(3) G(χ)G(χ̄) = χ(−1)p.

PROOF. G(ε;0) = ∑a(p) 1 = p. We also have G(χ;0) = χ(r)−1G(χ;0) for any r. Taking r so
that χ(r) 6= 1 shows G(χ;0) = ∑a(p) χ(a) = 0.

Next, ∑a(p) ζ ab
p = ∑

p−1
a=0
(
ζ b

p
)a =

{
p b = 0
0 b 6= 0

by the formula for the geometric sum.

|G(χ)|2 = ∑
a,b(p)

χ(ab−1)ζ a−b
p =

′

∑
b

′

∑
c

χ(c)ζ b(1−c)
p =

′

∑
c

χ(c)
′

∑
b

ζ
b(1−c)
p = p

′

∑
c

χ(c) [δ1,c−1] = pχ(1)− p ∑
c6=0

χ(c)= p .

Also,
G(χ;b) = G(χ̄;−b) = χ

−1(−1)G(χ̄;b) .
It follows that

G(χ;b)G(χ̄;b) = χ(−1) |G(χ;b)|2 = pχ(−1)
if b 6= 0. �
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4.4. Quadratic reciprocity (23-26/10)

4.4.1. The law of quadratic reciprocity (23/10).

THEOREM 59. (Quadratic reciprocity; Gauss) Let p,q be odd primes. Then

(1)
(
−1
p

)
= (−1)

p−1
2 .

(2)
(

2
p

)
= (−1)

p2−1
8 .

(3)
(

p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 .

PROOF. We have already seen (1),(2).
Let χ(a) =

(
a
p

)
be the quadratic character mod p. Then χ = χ̄ so G(χ)2 = χ(−1)p =

(−1)
p−1

2 p. We will now do some calculations in the ring Z[ζp] =
{

∑
p−1
j=0 a jζ

j
p | a j ∈ Z

}
, starting

by the observation that G(χ) ∈ Z[ζp] since χ takes integral values. We evaluate G(χ)q+1 modulu
q in two different ways. First,

G(χ)q+1 =
(
G(χ)2) q+1

2 = G(χ)2(−1)
p−1

2
q−1

2 p
q−1

2 ≡ (−1)
p−1

2
q−1

2 G(χ)2
(

p
q

)
(q) .

Secondly,

G(χ)q+1 = G(χ)G(χ)q

≡ G(χ) ∑
a(p)

(χ(a))q
ζ

qa
p (q)

= G(χ)G(χ
q;q)

= G(χ)G(χ;q)

= χ(q)G(χ)2 ,

since χ = χq = χ−1. Comparing both results we find:

χ(q)G(χ)2 ≡ (−1)
p−1

2
q−1

2

(
p
q

)
G(χ)2 (q) ,

where the congruence is in Z[ζρ ]. Since G(χ)2 is invertible mod q and
(

p
q

)
∈ {±1}, this implies(

p
q

)(
q
p

)
≡ (−1)

p−1
2

q−1
2 (q) .

The equality of both sides now follows from the following Lemma. �

LEMMA 60. Let G⊂C be finite and contain 1, and assume that R = Z[G] =
{

∑g∈G agg | ag ∈ Z
}
⊂

C is closed under multiplication. Then R∩Q = Z.

PROOF. Say |G| = n. Given z ∈ R and h ∈ G we have zh ∈ R so there exist ag,h ∈ Z so that
zh = ∑g ag,hg. Let A ∈Mn(Z) be the matrix with entries ag,h, and let v ∈ CG be the vector vg = g.
We have shown (zI−A)v = 0. It follows that z is a zero of the characteristic polynomial pA(x) =
det(xI−A) ∈ Z[x]. Since pA(x) is monic its rational zeroes are all integral. �
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EXAMPLE 61.
(−42

61

)
=
(−1

61

)( 2
61

)( 3
61

)( 7
61

)
=(−1)30(−1)

602+2·60
8

(61
3

)(61
7

)
=(1)(−1)15 (1

3

)(5
7

)
=

−
(7

5

)
=−

(2
5

)
=−(−1)

24
8 = 1. Also,

(−42
61

)
=
(19

61

)
=
(61

19

)
=
( 4

19

)
= 1.

4.4.2. The Jacobi symbol (26/10). Calculations above required factoring.

DEFINITION 62. Let Q > 1 be odd, say Q = ∏ j q j with q j primes (not necc distinct). For P∈Z
set (

P
Q

)
def= ∏

j

(
P
q j

)
.

LEMMA 63. (Jacobi symbol) Let P,P′ ∈ Z and let Q,Q′ be odd and positive. Then

(1) If P≡ P′ (Q) then
(

P
Q

)
=
(

P′
Q

)
.

(2)
(

PP′
Q

)
=
(

P
Q

)(
P′
Q

)
and

(
P

QQ′

)
=
(

P
Q

)(
P
Q′

)
.

THEOREM 64. Let P,Q be odd and positive. Then

(1)
(
−1
Q

)
= (−1)

Q−1
2 .

(2)
(

2
Q

)
= (−1)

Q2−1
8 .

(3)
(

P
Q

)(
Q
P

)
= (−1)

P−1
2

Q−1
2 .

PROOF. These follow immediately from the corresponding properties of the Legendre symbol
via the congruences (easily established by induction)

∑
j

q j−1
2
≡

∏ j q j−1
2

(2)

∑
j

q2
j −1

8
≡

∏ j q2
j −1

8
(2)

∑
i, j

pi−1
2

q j−1
2
≡ ∏i pi−1

2
∏ j p j−1

2
(2)

where pi,q j are positive and odd. �

4.5. Jacobi sums (28-30/10)

In this section we use ε rather than χ0 as the principal character.

4.5.1. A quadratic form. Write N(x2 +y2 = 1) for the number of solutions in Fp. Noting that

N(x2 = a) = 1+
(

a
p

)
we have:

N(x2 + y2 = 1) = ∑
a+b=1

(
1+
(

a
p

))(
1+
(

b
p

))
= ∑

a+b=1
(1+ χ(a)+ χ(b)+ χ(ab)) .

Here χ(a) =
(

a
p

)
. Now ∑a χ(a) = 1 and

∑
a+b=1

χ(ab)=∑
a

χ(a(1−a))= ∑
a6=1

χ((1−a)2)χ(
a

1−a
)= ∑

a6=1
χ

(
a

1−a

)
= ∑

c6=−1
χ(c)=−χ(−1)
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since c = a
1−a is inverse to a = c

1+c . It follows that

N(x2 + y2 = 1) = p− (−1)
p−1

2

which we interpret as a main term and an error term.

4.5.2. A cubic form. Let p be prime. Then xl ≡ a(p) has either zero or d = (l, p−1) solu-
tions, depending on whether a is a dth power or not.

LEMMA 65. Let p be prime. Then there are p−1 characters mod p and N(xl ≡ a)= ∑χd=ε χ(a).

PROOF. Let g be a primitive root mod p. Then characters are determined by the value χ(g).
Since gp−1 ≡ 1(p) we have χ(g)p−1 = χ(1) = 1. Thus χ(g) ∈ µp−1. Conversely, if ζ ∈ µp−1 set

χ(gr) = ζ r. This is well-defined since if gr ≡ gs (p) then (p− 1)|r− s so ζ r−s =
(
ζ p−1) r−s

p−1 = 1
and ζ r = ζ s.

Next, if a = 0 then N(xl ≡ a) = 1 and χ(a) = 0 for all characters except for ε . The proof for
a 6= 0 is left as an exercise. �

THEOREM 66. If p≡ 2(3), N(x3 + y3 = 1) = p. If p≡ 1(3) then∣∣N(x3 + y3 = 1)− (p−2)
∣∣≤ 2

√
p

PROOF. If p≡ 2(3) then the map x 7→ x3 is invertible, and N(x3 +y3 = 1) = N(x+y = 1) = p.
If p≡ 1(3), we have:

N(x3 + y3 = 1) = ∑
a+b=1

N(x3 = a)N(y3 = b) =
2

∑
i, j=0

χ
i(a)χ

j(b) .

The 0,0 summand is p. The 0, j and i,0 summands vanish, since ∑a χ(a) = ∑a χ2(a) = 0. We thus
have

N(x3 + y3 = 1) = p+2 ∑
a+b=1

χ(a)χ̄(b)+ ∑
a+b=1

χ(a)χ(b)+ ∑
a+b=1

χ̄(a)χ̄(b) .

Next, ∑a+b=1 χ(a)χ̄(b) = ∑a6=1 χ
( a

1−a

)
= ∑c6=−1 χ(c) =−χ(−1) =−χ(−1) =−1 since (−1)3 =

(−1). Finally,

G(χ)2 = ∑
a,b

χ(a)χ(b)ζ a+b
p

= ∑
t(p)

∑
a+b=t

χ(a)χ(b)ζ t
p

= ∑
a

χ(a)χ(−a)+ ∑
t 6=0

χ(t)2
ζ

t
p ∑

a+b=t
χ(

a
t
)χ

(
b
t

)
= χ(−1)∑

a
χ

2(a)+G(χ
2) ∑

a+b=1
χ(a)χ(b) .

It follows that

∑
a+b=1

χ(a)χ(b) =
G(χ)2

G(χ2)
.

In particular, |∑a+b=1 χ(a)χ(b)|=√p. �
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DEFINITION 67. Let χ1, . . . ,χr be Dirichlet characters mod p. Set

J0(χ1, . . . ,χr) = ∑
∑i ai=0

∏
i

χi(ai)

J(χ1, . . . ,χr) = ∑
∑i ai=1

∏
i

χi(ai) .

PROPOSITION 68. Let χ,λ 6= ε so that χλ 6= ε . Then
(1) J0(ε,ε) = J(ε,ε) = p.
(2) J0(χ,ε) = J(χ,ε) = 0.
(3) J0(χ,χ−1) = χ(−1)(p−1) while J(χ,χ−1) =−χ(−1).
(4) J0(χ,λ ) = 0 while J(χ,λ ) = G(χ)G(λ )

G(χλ ) so |J(χ,λ )|=√p.

PROOF. (1) is clear, (2) follows from ∑a χ(a)= 0. For (3) note that J0(χ,χ−1)= ∑a χ(a)χ−1(−a)=
χ(−1)∑a 6=0 χ(a)χ−1(a) while J(χ,χ−1)= ∑a6=1 χ

( a
1−a

)
= ∑c6=−1 χ(c)=−χ(−1). That J0(χ,λ )=

λ (−1)∑a (χλ )(a) = 0 is easy. Finally, we have:

G(χ)G(λ ) = ∑
a,b

χ(a)λ (b)ζ a+b
p

= ∑
t(p)

∑
a+b=t

χ(a)λ (b)ζ t
p

= ∑
a

χ(a)λ (−a)+ ∑
t 6=0

(χλ )(t)ζ t
p ∑

a+b=t
χ(

a
t
)λ
(

b
t

)
= 0+G(χλ )J(χ,λ ) .

Since |G(χλ )|=√p 6= 0 we are done. �

COROLLARY 69. If p≡ 1(4) then p = a2 +b2 for some a,b. If p≡ 1(3) then p = a2−ab+b2

for some a,b ∈ Z.

PROOF. Let χ be a character of order 4 in the first case, of 3 in the second. Then χ,χ2 6= ε

and J(χ,χ) ∈ Z[i] in the first case, J(χ,χ) ∈ Z[ω] in the second. Since |J(χ,χ)|2 = p we are done
(note that (a+bω)(a+bω̄) = a2 +b2 +ab(ω +ω2) = a2−ab+b2). �

THEOREM 70. Let χ1, . . . ,χr 6= ε so ρ = ∏
r−1
i=1 χi 6= ε and let λ = ∏

r
i=1 χi.

(1) J0(ε, . . . ,ε) = J(ε, . . . ,ε) = pr−1.
(2) J0(χ1, . . . ,χs,ε, . . . ,ε) = J1(χ1, . . . ,χs,ε, . . . ,ε) = 0 where 1≤ s≤ r−1.
(3) J0(χ1, . . . ,χr−1,ρ

−1) = ρ(−1)(p−1)J(χ1, . . . ,χr−1) while J0(χ1, . . . ,χr) = 0 if λ 6= ε .

(4) J(χ1, . . . ,χr) = ∏
r
i=1 G(χi)
G(λ ) if λ 6= ε , while J(χ1, . . . ,χr−1,ρ

−1) =−ρ(−1)∏
r−1
i=1 G(χi)
G(ρ) .

PROOF. The first two claims are clear. For the third claim,

J0(χ1, . . . ,χr)= ∑
ai∈(Z/pZ)r−1

r−1

∏
i=1

χi(ai)χr(−∑
i

ai)= χr(−1) ∑
t 6=0

 ∑
∑

r−1
i=1 ai=t

χi

(ai

t

)λ (t)= χr(−1)J(χ1, . . . ,χr−1) ∑
t 6=0

λ (t) .

If χr = ρ−1 and λ = ε then ∑t 6=0 λ (t) = ∑t 6=0 1 = p−1. Otherwise, ∑t 6=0 λ (t) = 0.
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For the second part of the fourth claim, note that
r

∏
i=1

G(χi) = ∑
ai

∏
i

χi(ai)ζ ∑i ai

= J0(χ1, . . . , ,χr)+

[
∑
t 6=0

λ (t)ζ t
p

]
J(χ1, . . . ,χr) .

If λ 6= ε then the J0 term vanishes, the sum over t is G(λ ) and we have the second part of the claim.
If λ = ε the sum over t is (−1), J0(χ1, . . . ,χr) = χr(−1)(p−1)J(χ1, . . . ,χr−1) and ∏

r−1
i=1 G(χi) =

G(ρ)J(χ1, . . . ,χr−1). We conclude that

J(χ1, . . . ,χr) =
{

ρ(−1)(p−1)−G(ρ−1)G(ρ)
}

J(χ1, . . . ,χr−1) .

Since G(ρ)G(ρ−1) = pρ(−1) we are done. �

COROLLARY 71. Let χi 6= ε . Then|J(χ1, . . . ,χr)| = p
r−1

2 if ∏i χi 6= ε , |J(χ1, . . . ,χr)| = p
r
2−1

otherwise.
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Math 437/537: Problem set 5 (due 13/11/09)

Quadratic reciprocity

1. Let p be a prime such that q = 2p + 1 is also prime. Assuming p ≡ 3(4) show that q|2p−1.
Conclude that, with one exception, 2p−1 is not prime.
Hint: Consider

(
2
q

)
.

2. Let χ be the quadratic character mod p. Show that G(χ) = ∑
p−1
t=0 ζ t2

p .

Jacobi sums

Let l1, . . . , lr ≥ 1, let a1, . . . ,ar,b ∈ Z be non-zero. We will study the equation
r

∑
i=1

aix
li
i = b .

3. Let N denote the number of solutions of the equation as a congruence mod p (a prime).
(a) Assuming p does not divide b nor any of the ai, express N in the form

N = ∑
χ1,...,,χr

C (χ1, . . . ,χr) · J (χ1, . . . ,χr)

where the summation ranges over certain r-tuples of characters and the coefficients C have
modulus 1.

(b) Under these assumptions, find integers M0, M1 so that∣∣N− pr−1∣∣≤M0 p(r/2)−1 +M1 p(r−1)/2 .

(c) Find an upper bound on M0, M1 depending only on l and conclude that if p is large enough
(with an explicit lower bound depending only on l, a, b), the congruence has a non-zero
solution.

(d) Show that, if p is large enough, the existence of a solution mod p guarantees a solution
mod pk for all k.

4. Find a simple criterion for the existence of a real solution to the equation.

REMARK. With appropriate assumptions on the li and on r, the equation ∑
r
i=1 aixli = b will

have solutions in Q (“global solutions”) iff it has solutions in R and in Z/pkZ for each p,k (“local
solutions”). We have shown that checking whether there are local solutions is a finite process.
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Arithmetical Functions

• I(n) =
[1

n

]
, ε(n) = 1, N(n) = n.

• ω(n) = #{p prime : p|n} i.e. ω(∏p pep) = ∑p min
{

ep,1
}

and Ω(∏p pep) = ∑p ep.

• Möbius function µ(n) =

{
(−1)ω(n) n�free
0 otherwise

, Liouville function λ (n) = (−1)Ω(n).

• von Mangoldt function Λ(n) =

{
log p n = pk, k ≥ 1
0 otherwise

.

• The divisor function τ = d = σ0 = ε ∗ ε = #{a : a|n} and its generalizations σ = σ1 =
ε ∗N and σk = ε ∗Nk = ∑d|n dk.

DEFINITION. The Dirichlet convolution of two arithmetical functions f ,g : Z≥1 → C is the
arithmetical function

( f ∗g)(n) = ∑
ab=n

f (a)g(b) ,

where the sum is over all pairs (a,b) ∈ Z2
≥1 such that ab = n.

5. Show that ∗ is associative and commutative, and that it is distributive over pointwise addition
of functions. Show that I is an identity for the operation.

6. (Multiplicative functions) Let f ,g be multiplicative functions.
(a) Show that f ∗g is multiplicative as well.
(b) Say f (pk) = g(pk) for all primes p and k ≥ 0. Show that f = g.
(c) Assuming f is not identically zero, show that f (1) = 1.

7. (Möbius inversion)
(a) Let f be a non-zero multiplicative function. Show that there exists a multiplicative func-

tion f−1 so that f ∗ f−1 = I.
Hint: Define f−1 on prime powers first.

(b) Conclude that if f , f ∗g are multiplicative and f is non-zero then so is g.
(c) Show that µ ∗ ε = I. Obtain the Möbius inversion formula: for any two arithmetical func-

tions F, f we have F(n) = ∑d|n f (d) iff f (n) = ∑d|n µ(d)F
( n

d

)
.

(d) Show that Λ∗ ε = log and hence that Λ(n) =−∑d|n µ(d) logd.
Hint: consider ∑d|n µ(d) log n

d as well.

8. (The divisor function)
(a) For each integer n≥ 1 show that there exists an integer k ≥ 1 so that τ(nk) = n.
(b) Starting with n0≥ 1 set ni+1 = τ(ni). Show that if n0 is composite then some ni is a perfect

square.

9. (Some bounds) In the MathSciNet seminar we discussed the problem of integral values of the
function φ(n)+σ(n)

n .
(a) Let p < q be primes and let n = pαqβ . Show that ϕ(n)+σ(n)

n = 2 + O( 1
p2 ), and conclude

that if φ(n)+σ(n)
n is an integer then it is equal to 2.

(b) Show that there exists a function f (k) so that σ(n)
n ≤ f (ω(n)) for all n.
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CHAPTER 5

Quadratic forms

5.1. Definitions

DEFINITION 72. An form is a homogenous polynomial. We call a form quadratic if it is of
degree 2, cubic if of degree 3 etc. We call a form binary if it has two variables, ternary if three and
so on.

EXAMPLE 73. x2 +y2 is a binary quadratic form, ∑
d
i=1 aix2

i is a quadratic form, while x3 +y3 +
zwv is a cubic form. The general binary quadratic form is then f (x,y) = ax2 +bxy+cy2, in which
case we can write

f (x,y) =
(

x y
)( a b/2

b/2 d

)(
x
y

)
.

The matrix doesn’t have to be integral!

DEFINITION 74. The discriminant of ax2 +bxy+ cy2 is d = b2−4ac.

LEMMA 75. f is a quadratic form iff f (ax) = a2 f (x) and B(u,v) = f (u + v)− f (u)− f (v) is
a symmetric bilinear form.

EXAMPLE 76. In general, a symmetric bilinear form (that is, a symmetric matrix A) gives rise
to the quadratic form f (x) = xT Ax. Conversely, if 2 is invertible a quadratic form f comes from
the bilinear form 1

2 ( f (u+ v)− f (u)− f (v)).

LEMMA 77. Let f be a quadratic form with complex coefficients. Then f (Zd) ⊂ Z iff f has
integral coefficients.

PROOF. Sufficiency is clear. Conversely, say f (x) = ∑i≤ j ai jxix j. Then aii = f (ei) while for
i < j we have ai j = f (ei + e j)− f (ei)+ f (e j). �

COROLLARY 78. An integral quadratic form is given by a symmetric matrix with entries in
1
2Z, except that diagonal entries must be integral.

DEFINITION 79. Call the quadratic form f degenerate if there exists u 6= 0 so that f (u) = 0
and B(u,v) = 0 for all v (that is, f (v + u) = f (v) for all v). A non-degenerate form is isotropic if
there exists u 6= 0 so that f (u) = 0, anisotropic otherwise.

LEMMA 80. A non-degerate real quadaratic form is isotropic iff it takes both positive and
negative values. Call the two cases definite and indefinite.

PROOF. If f (u) > 0 and f (v) < 0 then f has a zero in [u,v] 63 0 since f is non-negative at all
multiples of u. Since ∇ f (u) = uT B, if f is non-degenerate and isotropic it takes both negative and
positive values. �

• Why q. forms? structure.
36



Note: d ≡ 0,1(4), and conversely we have the principal forms x2− (d/4)y2 or x2 + xy− (d−1
4 )y2

with discriminant d. If b2−d = 4nc then nx2 +bxy+cy2 properly represents n. If ax2 +bxy+cy2 =
n with (x,y) = 1 then

4a2x2 +4abxy+4acy2 = 4an
so

(2ax+by)2 +
(
4ac−b2)y2 = 4an

and similarly
(2cy+bx)2−dx2 = 4cn

For each pr‖4n, either x or y is invertible mod pr. It follows that d is a square mod 4n.

5.2. Space of lattices & Reduction

Let f be a quadratic form on Rd . We can change co-ordinates: given γ ∈ GLd(R), f ◦ γ is
another quadratic form taking the same values. In terms of the bilinear form we are moving from
B to γT Bγ . This is an action of GLd(R) on the space of quadratic forms.

Similarly for f a quadratic form on Zd and γ ∈ GLd(Z).

THEOREM 81. (Sylvester’s “Law of intertial”) Orbit representatives for this action are the
diagonal forms with 0,±1 on the diagonal.

COROLLARY 82. A real-valued quadratic form on Zd up to choice of basis for Zd is equivalent
to a lattice Λ⊂

(
Rd,g

)
where g is one of these forms, up to isometry of Rd .

DEFINITION 83. Call ax2 +bxy+ cy2 reduced if 0≤ b≤ |a|= |c| or −|a|< b≤ |a|< |c|.

PROPOSITION 84. Every form is equivalent to a reduced one.

PROOF. Act by S =
(

−1
1

)
and T =

(
1 1

1

)
to get a form such that |a| ≤ |c| and

−|a|< b≤ |a|. If |a|= |c| then acting by S reverses the sign of b so may assume b≥ 0.
Equivalent understanding: to a real definite form attach the root τ ∈ H of az2 + bz + c. Then

root of f ◦ γ is γτ = ατ+β

cτ+δ
, and y(γτ) = y(τ)

|cτ+d|2
. �

COROLLARY 85. 〈S,T 〉= SL2(Z).

PROOF. τ = 2i is reduced, has trivial stabilizer. �

LEMMA 86.
(

α β

γ δ

)(
a b/2

b/2 c

)(
α β

γ δ

)
=

Suppose (x,y) = 1. y = 0 makes x =±1, q(±1,0) = a. y =±1 and |x| ≥ 2 gives |2ax+by| ≥
4a−a≥ 3a and so 4a f (x,y) = (2ax+by)2−dy2 ≥ 9a2−d > a2−b2 +4ac≥ 4ac and f (x,y) > c.
|y| ≥ 2 gives (2ax+by)2−dy2≥−4d = 16ac−4b2 = 12ac+4(ac−b2) > 4ac so again f (x,y) > c.
q(0,±1) = c. q(±1,±1) = a + b + c > c, and q(±1,∓1) = a− b + c > c unless a = b, and > a
unless a = b = c.

DEFINITION 87. H(d) is class number at (non-square) discriminant d. h(d) class number of
reduced forms.

THEOREM 88. (Heegner, Stark-Baker) For d < 0 h(d)= 1 iff d ∈{−3,−4,−7,−8,−11,−19,−43,−67,−163}.
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PROPOSITION 89. H(d)� d.
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CHAPTER 6

Diophantine Approximation and Continued Fractions

6.1. Diophantine approximation

Given a real number ξ would like to find r = a
b ∈Q so that

∣∣ξ − a
b

∣∣ is “small”.

LEMMA 90. Given ξ and b≥ 1 there is a so that
∣∣ξ − a

b

∣∣≤ 1
2b .

PROOF. Let a be the nearest integer to bξ . Then |bξ −a| ≤ 1
2 . �

NOTATION 91. {y}= y−byc, ‖y‖= d(y,Z) = min{{y},1−{y}}.

When ξ is rational can’t do very well:

LEMMA 92. (Discreteness principle) Let p
q , a

b ∈Q. If p
q 6=

a
b then

∣∣∣ p
q −

a
b

∣∣∣= ∣∣∣ pb−aq
qb

∣∣∣≥ 1
qb .

PROPOSITION 93. (Pigeon-hole principle) Given ξ ,n there are a,b ∈ Z with 1≤ b≤ n so that∣∣ξ − a
b

∣∣≤ 1
b(n+1) < 1

b2 .

PROOF. {{kξ}}n+1
k=0 ⊂ [0,1) is a set of size n+2. It follows that two of its members differ by at

most 1
n+1 . Say that 0≤ {kξ}−{lξ} ≤ 1

n+1 for some 0≤ k 6= l ≤ n+1. Then {(k− l)ξ}= {kξ}−
{lξ} ≤ 1

n+1 , so ‖|k− l|ξ‖ ≤ 1
n+1 . With b = |k− l| we have found a so that

∣∣ξ − a
b

∣∣≤ 1
b(n+1) . �

COROLLARY 94. For ξ ∈ R \Q there are infinitely many b for which there exists a such that∣∣ξ − a
b

∣∣< 1
b2 .

PROOF. For each n choose an,bn so that
∣∣∣ξ − an

bn

∣∣∣ ≤ 1
bn(n+1) < 1

b2
n
. The bn cannot be bounded

since d(ξ , 1
M!Z) > 0. �

The bound in the proposition si optimal up to constants:

THEOREM 95. (Liouville) let α ∈R be an algebraic number of degree d. Then
∣∣α− a

b

∣∣�α
1
bd

for all a,b ∈ Z with b≥ 1.

PROOF. Let f ∈ Z[x]≤d be such that f (α) = 0 and consider f (α)− a
b

α− a
b

. �
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Math 437/537: Problem set 6 (due 4/12/09)

Prime estimates

1. In class we found 0 < δ < 1 < ∆ so that δx ≤ ν(x) ≤ ∆x for x ≥ 2. Complete the proof of
Chebychev’s Theorem by finding 0 < A < B so that A x

logx ≤ π(x)≤ B x
logx if x≥ 2.

2. Find 0 < C < D so that C log logx≤ ∑p≤x
1
p ≤ D log logx for x≥ 3.

Hint: Break the range of summation into dyadic intervals
[
2 j ≤ p < 2 j+1].

OPT (The average number of prime divisors) Let P(x) = 1
x ∑n≤x ω(n).

(a) Show that P(x) = 1
x ∑p≤x

⌊
x
p

⌋
(sum over primes).

Hint: Write ω(n) = ∑p|n 1 and change the order of summation.
(b) Show that C log logx−1≤ P(x)≤ D log logx for x≥ 3.

Hint: y−1≤ byc ≤ y.
(c) Mertens has found E so that

∣∣∣∑p≤x
1
p − log logx

∣∣∣≤E for all x. Conclude that |P(x)− log logx|
is uniformly bounded as well.

— This result is usually phrased: “the average number of distinct primes dividing a random
integer is about log logx”.

Irrationality and continued fracionts

3. Show that the following numbers are irrational:
(a) logn

logm where n,m≥ 2 are relatively prime integers.
(b) e = ∑

∞
n=0

1
n! .

Hint: Consider bk!ec.
(c) ∑

∞
n=0

1
34n .

Hint: Multiply by a power of 3 and consider the fractional part.

OPT (Egyptian fractions) Show that r ∈ Q∩ (0,1) can be written in the form r = ∑
t
i=1

1
qi

with
distinct qi ∈ Z>0.

4. (Hermite) Let p be a prime such that p ≡ 1(4). Let 0 < u < p with u2 ≡ −1(p). Write
u
p = 〈a0, . . . ,an〉 and let i be maximal such that ki ≤

√
p.

(a) Show that
∣∣∣hi

ki
− u

p

∣∣∣< 1
ki
√

p . Conclude that |hi p−uki|<
√

p.

(b) Let x = ki, y = hi p− uki. Show that 0 < x2 + y2 < 2p. Show that x2 + y2 ≡ 0(p) and
conclude that p = x2 + y2.

5. Calculate the 0th through 4th convergents to π .

6. (Convergence)
(a) Suppose the infinite continued fractio n exapnsions of θ ,η agree through an. Show that

|θ −η | ≤ 1
k2

n
.
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(b) Show that limn→∞ 〈a0,a1, . . . ,an,bn+1,bn+2, . . .〉= 〈a0,a1, . . .〉.

The continued fraction expansion of e.

Set (−1)!! = 0!! = 1 and for n≥ 1,

n!! = ∏
1≤ j≤n
j≡n(2)

j .

Now for n≥ 0 set:

ψn(x) =
∞

∑
k=0

x2k

(2k +2n−1)!!(2k)!!
, wn(n) =

ψn(x)
xψn+1(x)

.

7. (Evaluation)
(a) Show that ψn(x) are entire functions.
(b) Show that ψ0(x) = cosh(x) = ex+e−x

2 and that ψ1(x) = sinh(x)
x = ex−e−x

2x . Conclude that
w0(x) = tanh(x) = ex+e−x

ex−e−x .
(d) Show that ψn(x) = (2n+1)ψn+1 + x2ψn+2. Conclude that wn(x) = 2n+1

x + 1
wn+1(x)

.

(e) Using your answer to part (d) show that e1/k+e−1/k

e1/k−e−1/k = 〈k,3k,5k,7k,9k, · · · 〉 for all k ≥ 1.

8. (Calculation)
(a) Let u = w0(1

2) and let v = 〈v0,v1,v2,v3, . . .〉 where v0 = 0, v1 = 5 = 2 · (2 ·1 + 1)−1 and
vn = 2(2n+1) for n≥ 2. Show that u = 2+ 1

1+ 1
v

(b) Show that e = u+1
u−1 = 〈2,1+2v〉.

(c) Let ξ be a real number, b ≥ 2 an integer, and let α = 〈0,2b−1,ξ 〉. Show that 2α =〈
0;b−1,1,1+ 2

ξ−1

〉
.

(d) Let {bn}∞

n=1 ⊂ Z≥2 and let α = 〈0,2b1−1,2b2,2b3, . . .〉. Show that

2α = 〈0,b1−1,1,1,b2−1,1,1,b3−1,1,1, . . .〉 .

9. (Punchline) Show that

e = 〈2,1,2,1,1,4,1,1,6,1,1,8,1,1,10, · · · 〉= 〈2,1,e2,e3,e4, · · · 〉

where en =

{
2k n = 3k−1
1 n≡ 0,1(3)

.
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6.2. Continued fractions

Note that PGL2(C) acts on P1(C) via
(

a b
c d

)
z = az+b

cz+d .

DEFINITION 96. For a sequence of complex numbers {ai}∞

i=0 we define a seqeunce of functions
as follows:

F−1(z) = 〈z〉 def= z
and for n≥ 0,

Fn(z) = 〈a0, . . . ,an,z〉
def=
〈

a0, . . . ,an +
1
z

〉
.

We also set
rn

def= 〈a0, . . . ,an〉= Fn−1(an) = Fn(∞) .

PROPOSITION 97. There exist {hn}∞

n=−2, {kn}∞

n=−2 so that Fn(z) = hnz+kn
hn−1z+kn−1

. In fact, taking
h−1 = 1, h−2 = 0, k−1 = 0, k−2 = 1, and hn = hn−1an +hn−2 and kn = kn−1an + kn−2 works.

PROOF. Let gn =
(

an 1
1

)
∈ GL2(C), let fn = g0 · · ·gn. Writing Gn(z) = gn · z we have

F−1 = I · z and Fn = Fn−1 ◦Gn so Fn(z) = gn · z. Since
(

a b
c d

)(
e 1
1 0

)
=
(

ae+b a
ce+d c

)
the

claim follows. �

COROLLARY 98. det( fn) = (−1)n−1. In particular,

rn− rn−1 =
det( fn)
knkn−1

=
(−1)n−1

knkn−1
.

It also follows that

rn− rn−2 = (−1)n−1
[

1
knkn−1

− 1
kn−1kn−2

]
=

(−1)n−1

knkn−2

kn−2− kn

kn−1

=
(−1)n

knkn−2
an

Assume now that {an}∞

n=0 are positive integers. Then f−1,gn ∈ GL2(Z) for all n so fn ∈
GL2(Z) for all n. This already shows that (hn,kn) = 1 for all n. Moreover, hn−2 is bounded
below by the nth Fibbonachi number (hn ≥ hn−1 + hn−2) and kn grows similarly (same inequality
just different initial conditions). It follows that rn− rn−1 decreases exponentially so the sequence
{rn}∞

n=0 converges.

REMARK 99. We will allow a0 to be any integer, noting that 〈a0, . . . ,an〉= a0−1+〈1,a1, . . . ,an〉
if n≥ 0. The same convergence proof applies.
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DEFINITION 100. An infinite simple continued fraction is an expression 〈a0,a1, . . .〉 with an
integers, positive except possible for a0. Its value is by definition limn→∞ rn.

THEOREM 101. The value θ = 〈a0, . . .〉 is irrational.

PROOF. We use rn− rn−2 = (−1)n

knkn−2
an, which implies r0 < r2 < r4 < .. . and r1 > r3 > · · · . This

shows that rn 6= θ for all n, in fact that

0 < |θ − rn|< |rn+1− rn| .
Multiplying by kn we find:

0 < |knθ −hn|<
1

kn+1
.

If θ was rational, |knθ −hn| would be uniformly bounded away from zero, a contradiction. �

PROPOSITION 102. Let θ = 〈a0, . . .〉. Then a0 = bθc and θ = a0 + 1
θ1

where θ1 = 〈a1, . . .〉.

PROOF. Note that r0 < θ < r1, that is a0 < θ < a0 + 1
a0

. Since a1≥ 1 we get the first claim. For
the second, note that fn = g0(g1 · · ·gn), that is 〈a0,a1, · · · ,an,z〉 = a0 + 1

〈a1,...,an,z〉 . Setting z = ∞

and taking n→ ∞ gives the claim. �

COROLLARY 103. If 〈a0, . . .〉= 〈b0, . . .〉 then an = bn for all n.

PROOF. The Lemma gives a0 = b0 and 〈a1, . . .〉= 〈b1, . . .〉. �

THEOREM 104. Given ξ ∈ R set ξ0 = ξ , and for n ≥ 0 set an = bξnc, ξn+1 = 1
ξn−an

. Then
ξn > an ≥ 1 for all n≥ 1 and

ξ = 〈a0,a1, . . .〉 .
If ξ is rational the process terminates after finitely many steps and we have equality.

PROOF. By induction we have ξ = 〈a0, . . . ,an,ξn+1〉 = Fn(ξn+1) and rn+1 = Fn(an+1). It fol-
lows that

ξ − rn = Fn(ξn+1)−
hn

kn

=
hnξn+1 +hn−1

knξn+1 + kn−1
− hn

kn

=
(−1)n

kn(knξn+1 + kn−1)
,

so

|ξ − rn| ≤
1

knkn+1
−−−→
n→∞

0

since ξn+1 ≥ an+1. �

COROLLARY 105. |knξ −hn| = 1
knξn+1+kn−1

< 1
kn

. In particular, |knξ −hn| and |ξ − rn| are
decreasing.

PROOF. The first claim is immediate. for the second note that kn−1ξn +kn−2 < kn−1(an +1)+
kn−2 = kn + kn−1 < knξn+1 + kn−1. �
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Note that

Fn(x)−Fn(y) =
hnx+hn−1

knx+ kn−1
− hny+hn−1

kny+ kn−1

=
(hnkn−1−hn−1kn)(x− y)
(knx+ kn−1)(kny+ kn−1)

THEOREM 106. Let a,b ∈ Z with b > 0. If
∣∣θ − a

b

∣∣ < |θ − rn| then b > kn. If |bθ −a| <
|knθ −hn| then b≥ kn+1.

PROOF. Let a,b ∈ Z with 0 < b < kn+1 (so a
b 6= rn+1) and a

b 6= rn. We have Fn+1(0) = rn,
Fn+1(∞) = rn+1 and

F ′n+1(z) =
hn+1(kn+1z+ kn)− kn+1(hn+1z+hn)

(kn+1z+ kn)2

=
det( fn+1)

(kn+1z+ kn)2 .

It follows that (−1)nF ′n+1(0) > 0. Since Fn+1 is bijective on P1(R) it follows that Fn+1 ([0,∞]) =
[rn,rn+1]. Now let x

y ∈ P1(Q) satisfy Fn+1(x
y) = a

b . Then x
y 6= 0,∞ and we have kn+1x + kny = b.

Since 0 < b < kn+1 this forces x,y to have opposite signs, so x
y /∈ [0,∞] and hence a

b /∈ [rn,rn+1], so∣∣θ − a
b

∣∣< |θ − rn+1|. This establishes the first claim. For the second note that

|bθ −a| = |kn+1xθ + knyθ −hn+1x−hn+1θ |
= |x(kn+1θ −hn+1)+ y(knθ −hn)|
= |x| |kn+1θ −hn+1|+ |y| |knθ −hn|

since θ − rn+1, θ − rn also have opposite signs. Since |x| , |y| ≥ 1 we find the claim. �

LEMMA 107. Let ξ ∈ R be irrational and a
b ∈Q satisfy

∣∣ξ − a
b

∣∣< 1
2b2 . Then a

b is a convergent
of ξ .

PROOF. There is n so that kn ≤ b < kn+1. We will show that b = kn. Otherwise we have
1

knb ≤
∣∣∣a

b −
hn
kn

∣∣∣≤ ∣∣ξ − a
b

∣∣+ ∣∣∣ξ − hn
kn

∣∣∣< 1
2b2 + 1

kn
|knξ −hn|< 1

2b2 + 1
kn

b
2b2 since |knξ −hh|< |bξ −a|.

This gives b < kn, a contradiction. �

LEMMA 108. Let ξ ∈R>0 be irrational, let A,B∈Z>0 and let A2−B2ξ 2 = σ satisfy 0 < σ < ξ

. Then A
B is a convergent of ξ .

PROOF. We have
∣∣ξ − A

B

∣∣= 1
B
|B2ξ 2−A2|
|Bξ+A| = 1

B2
σ

|ξ+ A
B |

< 1
B2

ξ

2ξ
since A

B > ξ . �

THEOREM 109. Let d ∈ Z≥1 be squarefree. Then any positive solution to Pell’s equation
x2−dy2 =±1 is a convergent of

√
d.

PROOF. For the positive sign this is the previous lemma. If x2−dy2 = −1 then y2− 1
d x2 = 1

d
and 0 < 1

d < 1√
d

. It follows that y
x is a convergent of 1√

d
, so x

y is a convergent of
√

d. �

REMARK 110. At least for d ≥ 17 the same holds for the equations x2−dy2 = ±4 which are
important when d ≡ 1(4).
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THEOREM 111. The solutions to x2− dy2 = ±1 take the form xn +
√

dyn = (x1 +
√

dy1)n for
n ∈ Z.

PROOF. Map solutions to R2 via (x,y) 7→
(

log
∣∣∣x+
√

dy
∣∣∣ , log

∣∣∣x−√dy
∣∣∣). The image is a dis-

crete subgroup of a one-dimensional subspace. �
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