Math 437/537 Problem set 1 (due 16/9/09) Euclid's Algorithm

1. Find the gcd and lcm of 1728 and 496. Show a complete calculation by hand.

The Fibonacci sequence

- 2. Define numbers f_n by $f_0 = 0$, $f_1 = 1$ and $f_{n+1} = f_n + f_{n-1}$ for all $n \ge 1$. Show that $f_n \le 2^n$ for all n. Conclude that the formal power series $F(x) = \sum_{n=0}^{\infty} f_n x^n$ has a positive radius of convergence.
- 3. Show that $F(x) = \frac{x}{1-x-x^2}$ (at least in the domain of convergence). Using the formula $\frac{1}{1-\alpha x} = \sum_{n=0}^{\infty} \alpha^n x^n$ find a closed-form expression for f_n .
- 4. Show that $\frac{\varphi^n}{\sqrt{5}} 1 < f_n < \frac{\varphi^n}{\sqrt{5}} + 1$ where φ is the larger root of $t^2 t 1 = 0$.
- 5. Show that Euclid's algorithm for finding gcd(a,b) using subtractions requires at most $\log_{\varphi}(\max\{a,b\})$ subtractions.

Divisibility

Only use results about divisibility for this section; do not invoke the notion of a prime.

- 6. (More gcd identities)
 - (a) Let $a, b \in \mathbb{Z}$ be relatively prime. Show that any divisor *c* of *ab* can be uniquely written in the form c = a'b' with a|a', b|b'.
 - (b) Show that $gcd(a,bc) = gcd(a,b) \cdot gcd(a,c)$ for any $a,b,c \in \mathbb{Z}$ with b,c relatively prime.
 - (c) Show that gcd(ab,c) = gcd(gcd(a,c),gcd(b,c)) for any $a,b,c \in \mathbb{Z}$.
- 7. Let $x, a, b \in \mathbb{Z}_{>1}$.
 - (a) Show that $gcd(x^a 1, x^b 1) = x^{gcd(a,b)} 1$.
 - (b) Find gcd $(x^{a} + 1, x^{b} + 1)$.

Algebra

- 8. Let *A* be a finite abelian group. For $x \in A$ and $d \in \mathbb{Z}$ write $d \cdot x$ for the sum of *d* copies of *x* (or -d copies of (-x) if d < 0).
 - (a) For an integer d show that $A[d] = \{x \in A \mid d \cdot x = 0\}$ is a subgroup.
 - (b) Show that $\sum_{x \in A} x = \sum_{x \in A[2]} x$.
- 9. For a prime *p* show that $(p-1)! \equiv -1(p)$.

Using the Gaussian Integers

For a complex number z = x + iy write \overline{z} for its complex conjugate x - iy, and Nz for its *norm* $z\overline{z} = x^2 + y^2$. We will study the ring $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}.$

- Show that Z[i] contains 0, 1 ∈ Cand is closed under addition and multiplication, in other words that it is a subring of C. Establish the *well-ordering principle of* Z[i]: a non-empty subset S ⊂ Z[i] contains a ∈ S so that Na ≤ Nb for all b ∈ S.
- 11. (Sums of two squares) Say that $A \in \mathbb{Z}$ is *the sum of two squares* if there exist $a, b \in \mathbb{Z}$ so that $a^2 + b^2 = A$, that is if $A \in \{Nz \mid z \in \mathbb{Z}[i]\}$.
 - (a) Show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ and $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ for all $z_1, z_2 \in \mathbb{C}$. Conclude that the norm is multiplicative.
 - (b) Let $A, B \in \mathbb{Z}$ be each a sum of two squares. Show that AB is a sum of two squares.
- 12. (Euclidean property)
 - (a) Let $a, b \in \mathbb{C}$ with $Nb \ge Na > 0$ and $Nb > \frac{1}{2}$. Show that one of $\operatorname{Re}(ab)$, $\operatorname{Im}(ab)$ has magnitude at least $\frac{1}{2}|a|^2$.
 - (b) Under the same assumptions as in part (a), show that there exists $\varepsilon \in \{\pm 1, \pm i\}$ such that $N(b \varepsilon a) < Nb$.
 - (c) Show that for every $a, b \in \mathbb{Z}[i]$ with $a \neq 0$ there exist $q, r \in \mathbb{Z}[i]$ so that b = qa + r and Nr < Na.