Math 437/537 Problem set 1 (due 16/9/09)

Euclid's Algorithm

1. Find the gcd and lcm of 1728 and 496. Show a complete calculation by hand.

The Fibonacci sequence

2. Define numbers f_{n} by $f_{0}=0, f_{1}=1$ and $f_{n+1}=f_{n}+f_{n-1}$ for all $n \geq 1$. Show that $f_{n} \leq 2^{n}$ for all n. Conclude that the formal power series $F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}$ has a positive radius of convergence.
3. Show that $F(x)=\frac{x}{1-x-x^{2}}$ (at least in the domain of convergence). Using the formula $\frac{1}{1-\alpha x}=$ $\sum_{n=0}^{\infty} \alpha^{n} x^{n}$ find a closed-form expression for f_{n}.
4. Show that $\frac{\varphi^{n}}{\sqrt{5}}-1<f_{n}<\frac{\varphi^{n}}{\sqrt{5}}+1$ where φ is the larger root of $t^{2}-t-1=0$.
5. Show that Euclid's algorithm for finding $\operatorname{gcd}(a, b)$ using subtractions requires at $\operatorname{most}^{\log _{\varphi}}(\max \{a, b\})$ subtractions.

Divisibility

Only use results about divisibility for this section; do not invoke the notion of a prime.
6. (More gcd identities)
(a) Let $a, b \in \mathbb{Z}$ be relatively prime. Show that any divisor c of $a b$ can be uniquely written in the form $c=a^{\prime} b^{\prime}$ with $a\left|a^{\prime}, b\right| b^{\prime}$.
(b) Show that $\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \cdot \operatorname{gcd}(a, c)$ for any $a, b, c \in \mathbb{Z}$ with b, c relatively prime.
(c) Show that $\operatorname{gcd}(a b, c)=\operatorname{gcd}(\operatorname{gcd}(a, c), \operatorname{gcd}(b, c))$ for any $a, b, c \in \mathbb{Z}$.
7. Let $x, a, b \in \mathbb{Z}_{\geq 1}$.
(a) Show that $\operatorname{gcd}\left(x^{a}-1, x^{b}-1\right)=x^{\operatorname{gcd}(a, b)}-1$.
(b) Find $\operatorname{gcd}\left(x^{a}+1, x^{b}+1\right)$.

Algebra
8. Let A be a finite abelian group. For $x \in A$ and $d \in \mathbb{Z}$ write $d \cdot x$ for the sum of d copies of x (or $-d$ copies of $(-x)$ if $d<0)$.
(a) For an integer d show that $A[d]=\{x \in A \mid d \cdot x=0\}$ is a subgroup.
(b) Show that $\sum_{x \in A} x=\sum_{x \in A[2]} x$.
9. For a prime p show that $(p-1)!\equiv-1(p)$.

Using the Gaussian Integers

For a complex number $z=x+i y$ write \bar{z} for its complex conjugate $x-i y$, and $N z$ for its norm $z \bar{z}=x^{2}+y^{2}$. We will study the ring $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$.
10. Show that $\mathbb{Z}[i]$ contains $0,1 \in \mathbb{C}$ and is closed under addition and multiplication, in other words that it is a subring of \mathbb{C}. Establish the well-ordering principle of $\mathbb{Z}[i]$: a non-empty subset $S \subset \mathbb{Z}[i]$ contains $a \in S$ so that $N a \leq N b$ for all $b \in S$.
11. (Sums of two squares) Say that $A \in \mathbb{Z}$ is the sum of two squares if there exist $a, b \in \mathbb{Z}$ so that $a^{2}+b^{2}=A$, that is if $A \in\{N z \mid z \in \mathbb{Z}[i]\}$.
(a) Show that $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$ and $\overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$ for all $z_{1}, z_{2} \in \mathbb{C}$. Conclude that the norm is multiplicative.
(b) Let $A, B \in \mathbb{Z}$ be each a sum of two squares. Show that $A B$ is a sum of two squares.
12. (Euclidean property)
(a) Let $a, b \in \mathbb{C}$ with $N b \geq N a>0$ and $N b>\frac{1}{2}$. Show that one of $\operatorname{Re}(a b), \operatorname{Im}(a b)$ has magnitude at least $\frac{1}{2}|a|^{2}$.
(b) Under the same assumptions as in part (a), show that there exists $\varepsilon \in\{ \pm 1, \pm i\}$ such that $N(b-\varepsilon a)<N b$.
(c) Show that for every $a, b \in \mathbb{Z}[i]$ with $a \neq 0$ there exist $q, r \in \mathbb{Z}[i]$ so that $b=q a+r$ and $N r<N a$.

