
Math 437/537: Problem set 6 (due 4/12/09)

Prime estimates

1. In class we found 0 < δ < 1 < ∆ so that δx ≤ ν(x) ≤ ∆x for x ≥ 2. Complete the proof of
Chebychev’s Theorem by finding 0 < A < B so that A x

logx ≤ π(x)≤ B x
logx if x≥ 2.

2. Find 0 < C < D so that C log logx≤ ∑p≤x
1
p ≤ D log logx for x≥ 3.

Hint: Break the range of summation into dyadic intervals
[
2 j ≤ p < 2 j+1].

OPT (The average number of prime divisors) Let P(x) = 1
x ∑n≤x ω(n).

(a) Show that P(x) = 1
x ∑p≤x

⌊
x
p

⌋
(sum over primes).

Hint: Write ω(n) = ∑p|n 1 and change the order of summation.
(b) Show that C log logx−1≤ P(x)≤ D log logx for x≥ 3.

Hint: y−1≤ byc ≤ y.
(c) Mertens has found E so that

∣∣∣∑p≤x
1
p − log logx

∣∣∣≤E for all x. Conclude that |P(x)− log logx|
is uniformly bounded as well.

— This result is usually phrased: “the average number of distinct primes dividing a random
integer is about log logx”.

Irrationality and continued fracionts

3. Show that the following numbers are irrational:
(a) logn

logm where n,m≥ 2 are relatively prime integers.
(b) e = ∑

∞
n=0

1
n! .

Hint: Consider bk!ec.
(c) ∑

∞
n=0

1
34n .

Hint: Multiply by a power of 3 and consider the fractional part.

OPT (Egyptian fractions) Show that r ∈ Q∩ (0,1) can be written in the form r = ∑
t
i=1

1
qi

with
distinct qi ∈ Z>0.

4. (Hermite) Let p be a prime such that p ≡ 1(4). Let 0 < u < p with u2 ≡ −1(p). Write
u
p = 〈a0, . . . ,an〉 and let i be maximal such that ki ≤

√
p.

(a) Show that
∣∣∣hi

ki
− u

p

∣∣∣< 1
ki
√

p . Conclude that |hi p−uki|<
√

p.

(b) Let x = ki, y = hi p− uki. Show that 0 < x2 + y2 < 2p. Show that x2 + y2 ≡ 0(p) and
conclude that p = x2 + y2.

5. Calculate the 0th through 4th convergents to π .

6. (Convergence)
(a) Suppose the infinite continued fractio n exapnsions of θ ,η agree through an. Show that

|θ −η | ≤ 1
k2

n
.
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(b) Show that limn→∞ 〈a0,a1, . . . ,an,bn+1,bn+2, . . .〉= 〈a0,a1, . . .〉.

The continued fraction expansion of e.

Set (−1)!! = 0!! = 1 and for n≥ 1,

n!! = ∏
1≤ j≤n
j≡n(2)

j .

Now for n≥ 0 set:

ψn(x) =
∞

∑
k=0

x2k

(2k +2n−1)!!(2k)!!
, wn(n) =

ψn(x)
xψn+1(x)

.

7. (Evaluation)
(a) Show that ψn(x) are entire functions.
(b) Show that ψ0(x) = cosh(x) = ex+e−x

2 and that ψ1(x) = sinh(x)
x = ex−e−x

2x . Conclude that
w0(x) = tanh(x) = ex+e−x

ex−e−x .
(d) Show that ψn(x) = (2n+1)ψn+1 + x2ψn+2. Conclude that wn(x) = 2n+1

x + 1
wn+1(x)

.

(e) Using your answer to part (d) show that e1/k+e−1/k

e1/k−e−1/k = 〈k,3k,5k,7k,9k, · · · 〉 for all k ≥ 1.

8. (Calculation)
(a) Let u = w0(1

2) and let v = 〈v0,v1,v2,v3, . . .〉 where v0 = 0, v1 = 5 = 2 · (2 ·1 + 1)−1 and
vn = 2(2n+1) for n≥ 2. Show that u = 2+ 1

1+ 1
v

(b) Show that e = u+1
u−1 = 〈2,1+2v〉.

(c) Let ξ be a real number, b ≥ 2 an integer, and let α = 〈0,2b−1,ξ 〉. Show that 2α =〈
0;b−1,1,1+ 2

ξ−1

〉
.

(d) Let {bn}∞

n=1 ⊂ Z≥2 and let α = 〈0,2b1−1,2b2,2b3, . . .〉. Show that

2α = 〈0,b1−1,1,1,b2−1,1,1,b3−1,1,1, . . .〉 .

9. (Punchline) Show that

e = 〈2,1,2,1,1,4,1,1,6,1,1,8,1,1,10, · · · 〉= 〈2,1,e2,e3,e4, · · · 〉

where en =

{
2k n = 3k−1
1 n≡ 0,1(3)

.
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