Math 437/537: Problem set 6 (due 4/12/09)

Prime estimates

1. In class we found $0<\delta<1<\Delta$ so that $\delta x \leq v(x) \leq \Delta x$ for $x \geq 2$. Complete the proof of Chebychev's Theorem by finding $0<A<B$ so that $A \frac{x}{\log x} \leq \pi(x) \leq B \frac{x}{\log x}$ if $x \geq 2$.
2. Find $0<C<D$ so that $C \log \log x \leq \sum_{p \leq x} \frac{1}{p} \leq D \log \log x$ for $x \geq 3$.

Hint: Break the range of summation into dyadic intervals $\left[2^{j} \leq p<2^{j+1}\right]$.
OPT (The average number of prime divisors) Let $P(x)=\frac{1}{x} \sum_{n \leq x} \omega(n)$.
(a) Show that $P(x)=\frac{1}{x} \sum_{p \leq x}\left\lfloor\frac{x}{p}\right\rfloor$ (sum over primes).

Hint: Write $\omega(n)=\sum_{p \mid n} 1$ and change the order of summation.
(b) Show that $C \log \log x-1 \leq P(x) \leq D \log \log x$ for $x \geq 3$.

Hint: $y-1 \leq\lfloor y\rfloor \leq y$.
(c) Mertens has found E so that $\left|\sum_{p \leq x} \frac{1}{p}-\log \log x\right| \leq E$ for all x. Conclude that $|P(x)-\log \log x|$ is uniformly bounded as well.

- This result is usually phrased: "the average number of distinct primes dividing a random integer is about $\log \log x$ ".

Irrationality and continued fracionts

3. Show that the following numbers are irrational:
(a) $\frac{\log n}{\log m}$ where $n, m \geq 2$ are relatively prime integers.
(b) $e=\sum_{n=0}^{\infty} \frac{1}{n!}$.

Hint: Consider $\lfloor k!e\rfloor$.
(c) $\sum_{n=0}^{\infty} \frac{1}{3^{4^{n}}}$.

Hint: Multiply by a power of 3 and consider the fractional part.
OPT (Egyptian fractions) Show that $r \in \mathbb{Q} \cap(0,1)$ can be written in the form $r=\sum_{i=1}^{t} \frac{1}{q_{i}}$ with distinct $q_{i} \in \mathbb{Z}_{>0}$.
4. (Hermite) Let p be a prime such that $p \equiv 1$ (4). Let $0<u<p$ with $u^{2} \equiv-1(p)$. Write $\frac{u}{p}=\left\langle a_{0}, \ldots, a_{n}\right\rangle$ and let i be maximal such that $k_{i} \leq \sqrt{p}$.
(a) Show that $\left|\frac{h_{i}}{k_{i}}-\frac{u}{p}\right|<\frac{1}{k_{i} \sqrt{p}}$. Conclude that $\left|h_{i} p-u k_{i}\right|<\sqrt{p}$.
(b) Let $x=k_{i}, y=h_{i} p-u k_{i}$. Show that $0<x^{2}+y^{2}<2 p$. Show that $x^{2}+y^{2} \equiv 0(p)$ and conclude that $p=x^{2}+y^{2}$.
5. Calculate the 0th through 4th convergents to π.
6. (Convergence)
(a) Suppose the infinite continued fraction exapnsions of θ, η agree through a_{n}. Show that

$$
|\theta-\eta| \leq \frac{1}{k_{n}^{2}} .
$$

(b) Show that $\lim _{n \rightarrow \infty}\left\langle a_{0}, a_{1}, \ldots, a_{n}, b_{n+1}, b_{n+2}, \ldots\right\rangle=\left\langle a_{0}, a_{1}, \ldots\right\rangle$.

The continued fraction expansion of e.

Set $(-1)!!=0!!=1$ and for $n \geq 1$,

$$
n!!=\prod_{\substack{1 \leq j \leq n \\ j \equiv n(2)}} j
$$

Now for $n \geq 0$ set:

$$
\psi_{n}(x)=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k+2 n-1)!!(2 k)!!} \quad, w_{n}(n)=\frac{\psi_{n}(x)}{x \psi_{n+1}(x)} .
$$

7. (Evaluation)
(a) Show that $\psi_{n}(x)$ are entire functions.
(b) Show that $\psi_{0}(x)=\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ and that $\psi_{1}(x)=\frac{\sinh (x)}{x}=\frac{e^{x}-e^{-x}}{2 x}$. Conclude that $w_{0}(x)=\tanh (x)=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$.
(d) Show that $\psi_{n}(x)=(2 n+1) \psi_{n+1}+x^{2} \psi_{n+2}$. Conclude that $w_{n}(x)=\frac{2 n+1}{x}+\frac{1}{w_{n+1}(x)}$.
(e) Using your answer to part (d) show that $\frac{e^{1 / k}+e^{-1 / k}}{e^{1 / k}-e^{-1 / k}}=\langle k, 3 k, 5 k, 7 k, 9 k, \cdots\rangle$ for all $k \geq 1$.
8. (Calculation)
(a) Let $u=w_{0}\left(\frac{1}{2}\right)$ and let $v=\left\langle v_{0}, v_{1}, v_{2}, v_{3}, \ldots\right\rangle$ where $v_{0}=0, v_{1}=5=2 \cdot(2 \cdot 1+1)-1$ and $v_{n}=2(2 n+1)$ for $n \geq 2$. Show that $u=2+\frac{1}{1+\frac{1}{v}}$
(b) Show that $e=\frac{u+1}{u-1}=\langle 2,1+2 v\rangle$.
(c) Let ξ be a real number, $b \geq 2$ an integer, and let $\alpha=\langle 0,2 b-1, \xi\rangle$. Show that $2 \alpha=$ $\left\langle 0 ; b-1,1,1+\frac{2}{\xi-1}\right\rangle$.
(d) Let $\left\{b_{n}\right\}_{n=1}^{\infty} \subset \mathbb{Z}_{\geq 2}$ and let $\alpha=\left\langle 0,2 b_{1}-1,2 b_{2}, 2 b_{3}, \ldots\right\rangle$. Show that

$$
2 \alpha=\left\langle 0, b_{1}-1,1,1, b_{2}-1,1,1, b_{3}-1,1,1, \ldots\right\rangle .
$$

9. (Punchline) Show that

$$
\begin{aligned}
& \quad e=\langle 2,1,2,1,1,4,1,1,6,1,1,8,1,1,10, \cdots\rangle=\left\langle 2,1, e_{2}, e_{3}, e_{4}, \cdots\right\rangle \\
& \text { where } e_{n}= \begin{cases}2 k & n=3 k-1 \\
1 & n \equiv 0,1(3)\end{cases}
\end{aligned}
$$

