Math 437/537: Problem set 6 (due 4/12/09)

Prime estimates

- 1. In class we found $0 < \delta < 1 < \Delta$ so that $\delta x \le v(x) \le \Delta x$ for $x \ge 2$. Complete the proof of Chebychev's Theorem by finding 0 < A < B so that $A \frac{x}{\log x} \le \pi(x) \le B \frac{x}{\log x}$ if $x \ge 2$.
- 2. Find 0 < C < D so that $C \log \log x \le \sum_{p \le x} \frac{1}{p} \le D \log \log x$ for $x \ge 3$. *Hint*: Break the range of summation into dyadic intervals $[2^j \le p < 2^{j+1}]$.

OPT (The average number of prime divisors) Let $P(x) = \frac{1}{x} \sum_{n \le x} \omega(n)$.

- (a) Show that $P(x) = \frac{1}{x} \sum_{p \le x} \left| \frac{x}{p} \right|$ (sum over primes). *Hint:* Write $\omega(n) = \sum_{p|n} \vec{1}$ and change the order of summation.
- (b) Show that $C \log \log x 1 \le P(x) \le D \log \log x$ for $x \ge 3$. *Hint:* $y - 1 \leq \lfloor y \rfloor \leq y$.
- (c) Mertens has found *E* so that $\left|\sum_{p \le x} \frac{1}{p} \log \log x\right| \le E$ for all *x*. Conclude that $|P(x) \log \log x|$ is uniformly bounded as well.
- This result is usually phrased: "the average number of distinct primes dividing a random integer is about log log x".

Irrationality and continued fracionts

- 3. Show that the following numbers are irrational:
 - (a) $\frac{\log n}{\log m}$ where $n, m \ge 2$ are relatively prime integers.
 - (b) $e = \sum_{n=0}^{\infty} \frac{1}{n!}$. *Hint:* Consider $\lfloor k! e \rfloor$.
 - (c) $\sum_{n=0}^{\infty} \frac{1}{3^{4^n}}$. *Hint*: Multiply by a power of 3 and consider the fractional part.
- OPT (Egyptian fractions) Show that $r \in \mathbb{Q} \cap (0,1)$ can be written in the form $r = \sum_{i=1}^{t} \frac{1}{a_i}$ with distinct $q_i \in \mathbb{Z}_{>0}$.
- 4. (Hermite) Let p be a prime such that $p \equiv 1(4)$. Let 0 < u < p with $u^2 \equiv -1(p)$. Write $\frac{u}{p} = \langle a_0, \dots, a_n \rangle$ and let *i* be maximal such that $k_i \leq \sqrt{p}$.

 - (a) Show that $\left|\frac{h_i}{k_i} \frac{u}{p}\right| < \frac{1}{k_i\sqrt{p}}$. Conclude that $|h_ip uk_i| < \sqrt{p}$. (b) Let $x = k_i$, $y = h_ip uk_i$. Show that $0 < x^2 + y^2 < 2p$. Show that $x^2 + y^2 \equiv 0(p)$ and conclude that $p = x^2 + y^2$.
- 5. Calculate the 0th through 4th convergents to π .
- 6. (Convergence)
 - (a) Suppose the infinite continued fraction exaphsions of θ , η agree through a_n . Show that

$$|\theta - \eta| \leq \frac{1}{k_n^2}$$

(b) Show that $\lim_{n\to\infty} \langle a_0, a_1, \ldots, a_n, b_{n+1}, b_{n+2}, \ldots \rangle = \langle a_0, a_1, \ldots \rangle$.

The continued fraction expansion of *e*.

Set (-1)!! = 0!! = 1 and for $n \ge 1$,

$$n!! = \prod_{\substack{1 \le j \le n \\ j \equiv n(2)}} j$$

Now for $n \ge 0$ set:

$$\psi_n(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k+2n-1)!!(2k)!!} , \quad w_n(n) = \frac{\psi_n(x)}{x\psi_{n+1}(x)}.$$

- 7. (Evaluation)
 - (a) Show that $\psi_n(x)$ are entire functions.
 - (b) Show that $\psi_0(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$ and that $\psi_1(x) = \frac{\sinh(x)}{x} = \frac{e^x e^{-x}}{2x}$. Conclude that $w_0(x) = \tanh(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}.$
 - (d) Show that $\psi_n(x) = (2n+1)\psi_{n+1} + x^2\psi_{n+2}$. Conclude that $w_n(x) = \frac{2n+1}{x} + \frac{1}{w_{n+1}(x)}$.
 - (e) Using your answer to part (d) show that $\frac{e^{1/k} + e^{-1/k}}{e^{1/k} e^{-1/k}} = \langle k, 3k, 5k, 7k, 9k, \cdots \rangle$ for all $k \ge 1$.
- 8. (Calculation)
 - (a) Let $u = w_0(\frac{1}{2})$ and let $v = \langle v_0, v_1, v_2, v_3, \ldots \rangle$ where $v_0 = 0, v_1 = 5 = 2 \cdot (2 \cdot 1 + 1) 1$ and $v_n = 2(2n+1)$ for $n \ge 2$. Show that $u = 2 + \frac{1}{1+\frac{1}{\nu}}$

 - (b) Show that e = u+1/u-1 = (2, 1+2v).
 (c) Let ξ be a real number, b ≥ 2 an integer, and let α = (0, 2b-1, ξ). Show that 2α = $\left\langle 0; b-1, 1, 1+\frac{2}{\xi-1} \right\rangle.$
 - (d) Let $\{b_n\}_{n=1}^{\infty} \subset \mathbb{Z}_{\geq 2}$ and let $\alpha = \langle 0, 2b_1 1, 2b_2, 2b_3, \ldots \rangle$. Show that $2\alpha = \langle 0, b_1 - 1, 1, 1, b_2 - 1, 1, 1, b_3 - 1, 1, 1, \ldots \rangle$
- 9. (Punchline) Show that

$$e = \langle 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, \dots \rangle = \langle 2, 1, e_2, e_3, e_4, \dots \rangle$$

where $e_n = \begin{cases} 2k & n = 3k - 1\\ 1 & n \equiv 0, 1 (3) \end{cases}$.