Math 437/537 Problem set 5 (due 11/11/09)

Quadratic reciprocity

- 1. Let *p* be a prime such that q = 2p + 1 is also prime. Assuming $p \equiv 3(4)$ show that $q|2^p 1$. Conclude that, with one exception, $2^p - 1$ is not prime. *Hint*: Consider $\left(\frac{2}{q}\right)$.
- 2. Let χ be the quadratic character mod p. Show that $G(\chi) = \sum_{t=0}^{p-1} \zeta_p^{t^2}$.

Jacobi sums

Let $l_1, \ldots, l_r \ge 1$, let $a_1, \ldots, a_r, b \in \mathbb{Z}$ be non-zero. We will study the equation

$$\sum_{i=1}^r a_i x^{l_i} = b$$

3. Let N denote the number of solutions of the equation as a congruence mod p (a prime).
(a) Assuming p does not divide b nor any of the a_i, express N in the form

$$N = \sum_{\boldsymbol{\chi}_1,\ldots,\boldsymbol{\chi}_r} C\left(\boldsymbol{\chi}_1,\ldots,\boldsymbol{\chi}_r\right) \cdot J\left(\boldsymbol{\chi}_1,\ldots,\boldsymbol{\chi}_r\right)$$

where the summation ranges over certain *r*-tuples of characters and the coefficients *C* have modulus 1.

(b) Under these assumptions, find integers M_0 , M_1 so that

$$|N-p^{r-1}| \le M_0 p^{(r/2)-1} + M_1 p^{(r-1)/2}.$$

- (c) Find an upper bound on M_0 , M_1 depending only on \underline{l} and conclude that if p is large enough (with an explicit lower bound depending only on \underline{l} , \underline{a} , b), the congruence has a non-zero solution.
- (d) Show that, if p is large enough, the existence of a solution mod p guarantees a solution mod p^k for all k.
- 4. Find a simple criterion for the existence of a real solution to the equation.

REMARK. With appropriate assumptions on the l_i and on r, the equation $\sum_{i=1}^{r} a_i x^{l_i} = b$ will have solutions in \mathbb{Q} ("global solutions") iff it has solutions in \mathbb{R} and in $\mathbb{Z}/p^k\mathbb{Z}$ for each p, k ("local solutions"). We have shown that checking whether there are local solutions is a finite process.

Arithmetical Functions

- $I(n) = \left[\frac{1}{n}\right], \varepsilon(n) = 1, N(n) = n.$
- $I(n) = \lfloor n \rfloor$, $\mathcal{E}(n) = 1$, N(n) = n. $\omega(n) = \#\{p \text{ prime } : p|n\}$ i.e. $\omega(\prod_p p^{e_p}) = \sum_p \min\{e_p, 1\}$ and $\Omega(\prod_p p^{e_p}) = \sum_p e_p$. Möbius function $\mu(n) = \begin{cases} (-1)^{\omega(n)} & n \Box \text{free} \\ 0 & \text{otherwise} \end{cases}$, Liouville function $\lambda(n) = (-1)^{\Omega(n)}$. von Mangoldt function $\Lambda(n) = \begin{cases} \log p & n = p^k, k \ge 1 \\ 0 & \text{otherwise} \end{cases}$. The divisor function $\tau = d = \sigma_0 = \varepsilon * \varepsilon = \#\{a : a|n\}$ and its generalizations $\sigma = \sigma_1 = \varepsilon * N$ and $\sigma_1 = \Sigma * N^k = \Sigma + d^k$.
- $\varepsilon * N$ and $\sigma_k = \varepsilon * N^k = \sum_{d|n} d^k$.

DEFINITION. The *Dirichlet convolution* of two arithmetical functions $f,g: \mathbb{Z}_{\geq 1} \to \mathbb{C}$ is the arithmetical function

$$(f*g)(n) = \sum_{ab=n} f(a)g(b),$$

where the sum is over all pairs $(a,b) \in \mathbb{Z}_{\geq 1}^2$ such that ab = n.

- Show that * is associative and commutative, and that it is distributive over pointwise addition 5. of functions. Show that *I* is an identity for the operation.
- 6. (Multiplicative functions) Let f, g be multiplicative functions.
 - (a) Show that f * g is multiplicative as well.
 - (b) Say $f(p^k) = g(p^k)$ for all primes p and $k \ge 0$. Show that f = g.
 - (c) Assuming f is not identically zero, show that f(1) = 1.
- 7. (Möbius inverseion)
 - (a) Let f be a non-zero multiplicative function. Show that there exists a multiplicative function f^{-1} so that $f * f^{-1} = I$. *Hint*: Define f^{-1} on prime powers first.
 - (b) Conclude that if f, f * g are multiplicative and f is non-zero then so is g.
 - (c) Show that $\mu * \varepsilon = I$. Obtain the *Möbius inversion formula*: for any two arithmetical functions *F*, *f* we have $F(n) = \sum_{d|n} f(d)$ iff $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$.
 - (d) Show that $\Lambda * \varepsilon = \log$ and hence that $\Lambda(n) = -\sum_{d|n} \mu(d) \log d$. *Hint*: consider $\sum_{d|n} \mu(d) \log \frac{n}{d}$ as well.
- 8. (The divisor function)
 - (a) For each integer n > 1 show that there exists an integer k > 1 so that $\tau(nk) = n$.
 - (b) Starting with $n_0 \ge 1$ set $n_{i+1} = \tau(n_i)$. Show that if n_0 is composite then some n_i is a perfect square.
- 9. (Some bounds) In the MathSciNet seminar we discussed the problem of integral values of the function $\frac{\phi(n) + \sigma(n)}{n}$.

(a) Let p < q be primes and let $n = p^{\alpha}q^{\beta}$. Show that $\frac{\varphi(n) + \sigma(n)}{n} = 2 + O(\frac{1}{p^2})$, and conclude that if $\frac{\phi(n) + \sigma(n)}{n}$ is an integer then it is equal to 2.

(b) Show that there exists a function f(k) so that $\frac{\sigma(n)}{n} \leq f(\omega(n))$ for all *n*.