Math 437/537 Problem set 4 (due 28/10/09)

Some polynomials

- 1. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x]$ be a polynomial with integer coefficients of degree $n \ge 1$, and let $r = \frac{p}{q} \in \mathbb{Q}$ be a rational number with (p,q) = 1. Assume that f(r) = 0.
 - (a) Show that $p|a_0$ and $q|a_n$.
 - (b) Conclude that if $a_n = 1$ (*f* is *monic*) then $r \in \mathbb{Z}$.
- 2. Let $g(x) = x^6 53x^4 + 680x^2 1156 = (x^2 2)(x^2 17)(x^2 34)$. Show that g(x) = 0 has solutions in the real numbers and in $\mathbb{Z}/m\mathbb{Z}$ for all *m*, but that g(x) = 0 has no solutions in the rational numbers.

DEFINITION. Call $f \in \mathbb{Z}[\underline{x}]$ homogeneous of degree r (or a form) if every monomial appearing in f has total degree r. Call $a \in \mathbb{Z}^n$ primitive if $gcd(a_1, \ldots, a_n) = 1$.

- 3. Let *f* be a form in *n* variables. Show that $V_f(\mathbb{Z}) = \bigcup_{d \ge 1} (dV'_f(\mathbb{Z}))$ where $V'_f(\mathbb{Z})$ is the set of primitive solutions to the equations f = 0.
- 4. Find all integral solutions to the following equations (*Hint*: reduce mod *m* for suitably chosen *m*).
 - (a) $x^2 + y^2 = 9z + 3$. (a) $x^{2} + y^{2} = 3z + 5$. (b) $x^{2} + 2y^{2} = 8z + 5$. (c) $x^{2} + y^{2} + z^{2} = 2xyz$. (d) $x^{4} + y^{4} + z^{4} = 5x^{2}yz$. (e) $x^{4} + 2x^{3} + 2x^{2} + 2x + 5 = y^{2}$
- 5. (Rational points)
 - (a) Let $f \in \mathbb{Q}[x, y]$ be a cubic and let $g \in \mathbb{Q}[x, y]$ be linear and non-constant. Obtain a correspondence between $V_f(\mathbb{Q}) \cap V_g(\mathbb{Q})$ and the roots of a polynomial of degree at most 3 with rational coefficient, and conclude that this set, if finite, has size at most 3.
 - OPTIONAL Explain why the set cannot have size 2, if we count zeroes with multiplicity and include points at infinity.
 - From now on let $f(x, y) = x^3 + 2x^2 y^2$. We will find $V_f(\mathbb{Q}) \subset \mathbb{Q}^2$.
 - (b) Let g be a linear polynomial so that $(0,0) \in V_g(\mathbb{Q})$. Show that $V_f(\mathbb{Q}) \cap V_g(\mathbb{Q})$ contains at most one more point.
 - (c) Find all \mathbb{Q} -rational points on V_f .
 - (d) Given $\varepsilon > 0$, show how to find a rational point $(x, y) \in V_f(\mathbb{Q})$ with $0 < |x|, |y| < \varepsilon$.
 - (e) Exhibit specific $x, y \in \mathbb{Q}$ such that $y^2 = x^3 + 2x^2$ and $0 < |x|, |y| < \frac{1}{1000}$.

Using $\mathbb{Z}[i]$

- 6. (The issue at 2)
 - (a) Let $w \in \mathbb{Z}[i]$ divide 2. Show that w is associate to one of $1, \pi, \pi^2$ where $\pi = 1 + i$.
 - (b) Let $x, y \in \mathbb{Z}$ be relatively prime, and let $z = x + iy \in \mathbb{Z}[i]$. Show that (z, \overline{z}) divides 2 in $\mathbb{Z}[i]$. Conclude that $(z, \overline{z}) = \pi$ if x, y are both odd, $(z, \overline{z}) = 1$ otherwise.

(c) Now take any $x, y \in \mathbb{Z}$. Show that $(x + iy, x - iy) = (x, y) \cdot \begin{cases} \pi & \frac{x}{(x, y)}, \frac{y}{(x, y)} \text{ both odd} \\ 1 & \text{otherwise} \end{cases}$.

- 7. Let $x, y \in \mathbb{Z}$ satisfy $y^2 = x^3 1$.
 - (a) Show that *y* is even and *x* is odd. *Hint*: reduce the equation modulu 4.
 - (b) Let $z = 1 + iy \in \mathbb{Z}[i]$. Show that $z\overline{z}$ is a cube in $\mathbb{Z}[i]$ and that $(z,\overline{z}) = 1$ there. Conclude that there exists $w \in \mathbb{Z}[i]$ and $\varepsilon \in \mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$ such that $z = \varepsilon \cdot w^3$.
 - (c) Examining the real and imaginary parts of the resulting identity, show that x = 1, y = 0 is the only solution.
- 8. Let $(x, y, z) \in \mathbb{Z}^3$ be primitive and satisfy $x^2 + y^2 = z^2$.
 - (a) Show that x, y have different parities. WLG we'll assume that x is odd, y is even.
 - (b) Show that x + iy ∈ Z[i] has the form ε(m + in)² for some relatively prime m, n ∈ Z and ε ∈ Z[i][×].
 - (c) Conclude that $(x, y, z) = (m^2 n^2, 2mn, m^2 + n^2)$.
 - Note how the choice of root of unity corresponds to the choice of which of x, y is even.

Sums of two squares

- 9. Let $r_2(n) = \#\{(a,b) \in \mathbb{Z}^2 \mid a^2 + b^2 = n\}$ and set $s(n) = \frac{1}{4}r_2(n)$. (a) Show that s(n) is integral and multiplicative.
 - *Hint:* Adapt problem 6(a) from PS1 to $\mathbb{Z}[i]$.
 - (b) For $k \ge 1$, and primes $p \equiv 1 (4)$ and $q \equiv 3 (4)$ show that $s(2^k) = 1$, $s(p^k) = k + 1$, $s(q^k) = \begin{cases} 1 & k \equiv 0 (2) \\ 0 & k \equiv 1 (2) \end{cases}$
 - (c) Find the smallest integer *n* so that $r_2(n) = 60$.

10. Define a function $\chi_4 \colon \mathbb{Z}_{\geq 1} \to \{0, \pm 1\}$ by setting $\chi_4(n) = \begin{cases} 1 & n \equiv 1 \ (4) \\ -1 & n \equiv 3 \ (4) \\ 0 & 2|n \end{cases}$

- (a) Show that $\chi_4(ab) = \chi_4(a)\chi_4(b)$ for all $a, b \in \mathbb{Z}$.
- (b) Show that $n \mapsto \sum_{d|n} \chi_4(d)$ is multiplicative.
- (c) show that $s(n) = \sum_{d|n} \chi_4(d)$ for prime powers *n*.
- (d) Show that $r_2(n) = 4\sum_{d|n} \chi_4(d)$ for all *n*.

Some arithmetic

11. The most recently discovered perfect number is $N = 2^{p-1}(2^p-1)$, where p = 42,643,801. Determine how many digits N has, and find the first three digits (on the left) and the last three digits (on the right). You may use the equivalent of an abacus (e.g. a simple electronic calculator) to do the arithmetic, but not the equivalent of a general-purpose computer – for example do not evaluate N directly!

Roots of unity

Let $e(x) = e^{2\pi i x}$. For an integer *m* Let $\zeta_m = e(\frac{1}{m})$, $\zeta_m^k = e(\frac{k}{m})$. Let $\mu_m = \{\zeta_m^k\}_{k \in \mathbb{Z}} \subset \mathbb{C}$.

- 12. Show that μ_m is the set of solutions to $z^m = 1$ in \mathbb{C} , and that it is closed under multiplication. Show that the map $k \mapsto \zeta_m^k$ induces a bijection $\mathbb{Z}/m\mathbb{Z} \to \mu_m$ mapping addition to multiplication. Fixing k, show that $\mu_m = \left\{ \zeta_m^{kj} \right\}_{j \in \mathbb{Z}}$ iff (k, m) = 1. In that case we call ζ_m^k a *primitive* root of unity of order *m*.
- 13. Given $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{C}$ and $j \in \mathbb{Z}/m\mathbb{Z}$ set $\hat{f}(k) = \sum_{j(m)} f(j)\zeta_m^{-jk} = \sum_{a(m)} f(a)e(\frac{ak}{m})$. We call \hat{f} the *Discrete Fourier Transform* of f.
 - (a) Show that $\sum_{k(m)} \zeta_m^{kj} = m \delta_{j,0}$.
 - (b) Show that $\hat{f}(k) = f(-k)$ ("Fourier inversion").
 - (c) Show that $\sum_{j(m)} |f(j)|^2 = \frac{1}{m} \sum_{k(m)} |\hat{f}(k)|^2$ ("Parseval's identity").