Math 437/537 Problem set 3 (due 16/10/09)

Euler function

1. Find all solutions in positive integers to $\phi(x)=24$.
2. For each $n \geq 1$ show that there are finitely many solutions to $\phi(x)=n$.
3. Let $f \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. For $m \in \mathbb{Z}_{\geq 1}$ let $N_{f}(m)$ denote the number of solutions in $\mathbb{Z} / m \mathbb{Z}$ to the congruence $f(x) \equiv 0(m)$. Let $\phi_{f}(m)=\{a \in \mathbb{Z} / m \mathbb{Z} \mid(f(a), m)=1\}$.
(a) Show that ϕ_{f} is multiplicative, that is that $\phi_{f}(n m)=\phi_{f}(n) \phi_{f}(m)$ whenever $(m, n)=1$.
(b) For p prime and $e \geq 1$ find $\phi_{f}\left(p^{e}\right)$ in terms of $\phi_{f}(p)$.
(c) For p prime show that $\phi_{f}(p)+N_{f}(p)=p$.
(d) Show that $\frac{\phi_{f}(n)}{n}=\prod_{p \mid n}\left(1-\frac{N_{f}(p)}{p}\right)$ for all n.

Multiplicative groups

4. Let $m \geq 1$ and let $a, b \in(\mathbb{Z} / m \mathbb{Z})^{\times}$have orders r, s respectively. Let t be the order of $a b$. Show:

$$
\left.\frac{r s}{(r, s)^{2}} \right\rvert\, t \quad \text { and } \quad t \left\lvert\, \frac{r s}{(r, s)} .\right.
$$

5. Let p be a prime. How many solutions are there to $x^{4}-x^{2}+1=0$ in $\mathbb{Z} / p \mathbb{Z}$?

Hint: Factor $x^{12}-1$ in $\mathbb{Z}[x]$.

Primality Testing I - Carmichael numbers

We'd like to determine whether a given $m \in \mathbb{Z}_{\geq 1}$ is prime. For this we generate $a \in \mathbb{Z} / m \mathbb{Z}$ (represented as integers in the range $0 \leq m-1$) and test their multiplicative properties $\bmod m$.
6. Assume that our calculations produce some power a^{k} with $\left(a^{k}, m\right)>1$ (perhaps $k=1$!). Explain why this resolves the question about m.

We will therefore implicitly assume from now on that $(a, m)=1$. Our first attempt will be to generate numbers $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$and check whether $a^{m-1} \equiv 1(m)$.
7. Show that if $(a, 561)=1$ then $a^{560} \equiv 1(561)$ yet that 561 is composite.

Hint: use the Chinese Remainder Theorem.
8. Let p be a prime and assume $p^{2} \mid m$. Show that $(\mathbb{Z} / m \mathbb{Z})^{\times}$contains an element of order p, and conclude that there exists $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$such that $a^{m-1} \not \equiv 1(m)$.

Definition. Call a composite number m a Carmichael number if the statement of Fermat's little Theorem holds modulu m, that is if for any a relatively prime to m one has $a^{m-1} \equiv 1(m)$.
9. (Korselt's criterion) Show that m is a Carmichael number iff it is square-free, and for every $p \mid m$ one has $(p-1) \mid(m-1)$.
10. Find all Carmichael numbers of the form $3 p q$ where $3<p<q$ are primes.

Primality Testing II - the Miller-Rabin test.

From now on we assume that m an odd number and write $m-1=2^{e} n$ with n odd. Let $f \leq e-1$ be maximal such that there exists $x \in(\mathbb{Z} / m \mathbb{Z})^{\times}$with $x^{n 2^{f}}=-1$. Write $s=n 2^{f}$ and set

$$
\begin{gathered}
B=\left\{a \in(\mathbb{Z} / m \mathbb{Z})^{\times} \mid a^{n} \equiv 1(m) \text { or } \exists 0 \leq j<e: a^{n 2^{j}} \equiv-1(m)\right\}, \\
B^{\prime}=\left\{a \in(\mathbb{Z} / m \mathbb{Z})^{\times} \mid a^{s} \equiv \pm 1(m)\right\} \\
B^{\prime \prime}=\left\{a \in(\mathbb{Z} / m \mathbb{Z})^{\times} \mid a^{m-1} \equiv 1(m)\right\}
\end{gathered}
$$

11. Show that $B \subset B^{\prime} \subset B^{\prime \prime}$, and that B^{\prime} and $B^{\prime \prime}$ are closed under multiplication.
12. Let m be prime. Show that $B=(\mathbb{Z} / m \mathbb{Z})^{\times}$.

Hint: If $a^{n} \neq 1$ let $b_{j}=a^{2^{j} n}$. Then $b_{j+1}=b_{j}^{2}$ and $b_{e}=1$.
13. Assume that m is composite and that $B^{\prime}=(\mathbb{Z} / m \mathbb{Z})^{\times}$.
(a) Show that there exists relatively prime m_{1}, m_{2} such that $m=m_{1} m_{2}$.

Hint: consider $B^{\prime \prime}$.
(b) Let $x \in \mathbb{Z}$ satisfy $x^{s} \equiv-1(m)$. Show that there exists $y \in \mathbb{Z}$ such that $y^{s} \equiv-1\left(m_{1}\right)$ but $y^{s} \equiv 1\left(m_{2}\right)$ and conclude that B^{\prime} is a proper subset.
14. Assume that m is composite. Shwo that $b \in(\mathbb{Z} / m \mathbb{Z})^{\times} \backslash B^{\prime}$ implies $b B^{\prime} \cap B^{\prime}=\emptyset$ and conclude that $|B| \leq\left|B^{\prime}\right| \leq \frac{1}{2}\left|(\mathbb{Z} / m \mathbb{Z})^{\times}\right|$.

ALGORITHM. (Rabin) Input: an integer $m \geq 2$.
(1) If m is even, output "prime" if $m=2$, "composite" otherwise and stop. If m is odd, continue.
(2) Repeat the following k times (k is fixed in advance):
(a) Generate $a \in\{1, \ldots, m-1\}$, uniformly at random.
(b) If $(a, m)>1$, output "composite" and stop.
(c) Check whether $a \in B$. If not, output "composite" and stop.
(3) Output "prime".
15. (Primality testing is in BPP)
(a) Show that if m is prime, the algorithm always output "prime".
(b) Show that if m is composite, the algorithm outputs "composite" with probability at least $1-\frac{1}{2^{k}}$.

OPTIONAL Find c so that the algorithm runs in time $O\left(k\left(\log _{2} m\right)^{c}\right)$.
Hint: Given $1 \leq a \leq m-1$ efficiently calculate $a, a^{2}, a^{4}, a^{8}, a^{16}, \ldots$ and use that to calculate $a^{n}(\bmod m)$ in time polynomial in $\log n$ and $\log m$.

REMARK. There exist infinitely many Carmichael numbers; see the paper of Alford, Granville and Pomerance, Annals of Math. (2) v. 140 (1994).

