Math 437/537 Problem set 3 (due 16/10/09)

Euler function

- 1. Find all solutions in positive integers to $\phi(x) = 24$.
- 2. For each $n \ge 1$ show that there are finitely many solutions to $\phi(x) = n$.
- 3. Let $f \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. For $m \in \mathbb{Z}_{\geq 1}$ let $N_f(m)$ denote the number of solutions in $\mathbb{Z}/m\mathbb{Z}$ to the congruence $f(x) \equiv 0$ (*m*). Let $\phi_f(m) = \{a \in \mathbb{Z}/m\mathbb{Z} \mid (f(a), m) = 1\}$.
 - (a) Show that ϕ_f is multiplicative, that is that $\phi_f(nm) = \phi_f(n)\phi_f(m)$ whenever (m,n) = 1.
 - (b) For p prime and $e \ge 1$ find $\phi_f(p^e)$ in terms of $\phi_f(p)$.
 - (c) For *p* prime show that $\phi_f(p) + N_f(p) = p$.
 - (d) Show that $\frac{\phi_f(n)}{n} = \prod_{p|n} \left(1 \frac{N_f(p)}{p}\right)$ for all *n*.

Multiplicative groups

4. Let $m \ge 1$ and let $a, b \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ have orders r, s respectively. Let t be the order of ab. Show:

$$\frac{rs}{(r,s)^2} \Big| t$$
 and $t \Big| \frac{rs}{(r,s)}$.

5. Let *p* be a prime. How many solutions are there to $x^4 - x^2 + 1 = 0$ in $\mathbb{Z}/p\mathbb{Z}$? *Hint*: Factor $x^{12} - 1$ in $\mathbb{Z}[x]$.

Primality Testing I - Carmichael numbers

We'd like to determine whether a given $m \in \mathbb{Z}_{\geq 1}$ is prime. For this we generate $a \in \mathbb{Z}/m\mathbb{Z}$ (represented as integers in the range $0 \leq m-1$) and test their multiplicative properties mod m.

6. Assume that our calculations produce some power a^k with $(a^k, m) > 1$ (perhaps k = 1!). Explain why this resolves the question about m.

We will therefore implicitly assume from now on that (a, m) = 1. Our first attempt will be to generate numbers $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ and check whether $a^{m-1} \equiv 1 (m)$.

- 7. Show that if (a, 561) = 1 then $a^{560} \equiv 1(561)$ yet that 561 is composite. *Hint:* use the Chinese Remainder Theorem.
- 8. Let *p* be a prime and assume $p^2|m$. Show that $(\mathbb{Z}/m\mathbb{Z})^{\times}$ contains an element of order *p*, and conclude that there exists $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ such that $a^{m-1} \neq 1(m)$.

DEFINITION. Call a composite number *m* a *Carmichael number* if the statement of Fermat's little Theorem holds modulu *m*, that is if for any *a* relatively prime to *m* one has $a^{m-1} \equiv 1 (m)$.

- 9. (Korselt's criterion) Show that *m* is a Carmichael number iff it is square-free, and for every p|m one has (p-1)|(m-1).
- 10. Find all Carmichael numbers of the form 3pq where 3 are primes.

Primality Testing II - the Miller-Rabin test.

From now on we assume that *m* an odd number and write $m - 1 = 2^e n$ with *n* odd. Let $f \le e - 1$ be maximal such that there exists $x \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ with $x^{n2^f} = -1$. Write $s = n2^f$ and set

$$B = \left\{ a \in (\mathbb{Z}/m\mathbb{Z})^{\times} \mid a^{n} \equiv 1 \ (m) \text{ or } \exists 0 \leq j < e : a^{n2^{j}} \equiv -1 \ (m) \right\},$$
$$B' = \left\{ a \in (\mathbb{Z}/m\mathbb{Z})^{\times} \mid a^{s} \equiv \pm 1 \ (m) \right\},$$
$$B'' = \left\{ a \in (\mathbb{Z}/m\mathbb{Z})^{\times} \mid a^{m-1} \equiv 1 \ (m) \right\}.$$

- 11. Show that $B \subset B' \subset B''$, and that B' and B'' are closed under multiplication.
- 12. Let *m* be prime. Show that $B = (\mathbb{Z}/m\mathbb{Z})^{\times}$. *Hint*: If $a^n \neq 1$ let $b_j = a^{2^j n}$. Then $b_{j+1} = b_j^2$ and $b_e = 1$.
- 13. Assume that *m* is composite and that B' = (ℤ/mℤ)[×].
 (a) Show that there exists relatively prime m₁,m₂ such that m = m₁m₂. *Hint*: consider B".
 - (b) Let $x \in \mathbb{Z}$ satisfy $x^s \equiv -1(m)$. Show that there exists $y \in \mathbb{Z}$ such that $y^s \equiv -1(m_1)$ but $y^s \equiv 1(m_2)$ and conclude that B' is a proper subset.
- 14. Assume that *m* is composite. Show that $b \in (\mathbb{Z}/m\mathbb{Z})^{\times} \setminus B'$ implies $bB' \cap B' = \emptyset$ and conclude that $|B| \leq |B'| \leq \frac{1}{2} |(\mathbb{Z}/m\mathbb{Z})^{\times}|$.

ALGORITHM. (*Rabin*) Input: an integer $m \ge 2$.

- (1) If m is even, output "prime" if m = 2, "composite" otherwise and stop. If m is odd, continue.
- (2) *Repeat the following k times (k is fixed in advance):*
 - (a) Generate $a \in \{1, ..., m-1\}$, uniformly at random.
 - (b) If (a,m) > 1, output "composite" and stop.
 - (c) Check whether $a \in B$. If not, output "composite" and stop.
- (3) *Output "prime"*.
- 15. (Primality testing is in BPP)
 - (a) Show that if *m* is prime, the algorithm always output "prime".
 - (b) Show that if *m* is composite, the algorithm outputs "composite" with probability at least $1 \frac{1}{2^k}$.
- OPTIONAL Find *c* so that the algorithm runs in time $O(k(\log_2 m)^c)$.

Hint: Given $1 \le a \le m-1$ efficiently calculate $a, a^2, a^4, a^8, a^{16}, \ldots$ and use that to calculate $a^n \pmod{m}$ in time polynomial in $\log n$ and $\log m$.

REMARK. There exist infinitely many Carmichael numbers; see the paper of Alford, Granville and Pomerance, Annals of Math. (2) v. 140 (1994).